| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmmod.p | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑇  ∩  𝑈 )  ⊆  𝑇  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑇  ∩  𝑈 )  ⊆  𝑇 )  | 
						
						
							| 6 | 
							
								1
							 | 
							lsmless2 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑇  ∩  𝑈 )  ⊆  𝑇 )  →  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ⊆  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 7 | 
							
								2 3 5 6
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ⊆  ( 𝑆  ⊕  𝑇 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  𝑆  ⊆  𝑈 )  | 
						
						
							| 9 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑇  ∩  𝑈 )  ⊆  𝑈  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑇  ∩  𝑈 )  ⊆  𝑈 )  | 
						
						
							| 11 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 13 | 
							
								12
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							acsmre | 
							⊢ ( ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ ( Base ‘ 𝐺 ) )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 15 | 
							
								2 11 13 14
							 | 
							4syl | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							mreincl | 
							⊢ ( ( ( SubGrp ‘ 𝐺 )  ∈  ( Moore ‘ ( Base ‘ 𝐺 ) )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 18 | 
							
								15 3 16 17
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							lsmlub | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝑆  ⊆  𝑈  ∧  ( 𝑇  ∩  𝑈 )  ⊆  𝑈 )  ↔  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ⊆  𝑈 ) )  | 
						
						
							| 20 | 
							
								2 18 16 19
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( ( 𝑆  ⊆  𝑈  ∧  ( 𝑇  ∩  𝑈 )  ⊆  𝑈 )  ↔  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ⊆  𝑈 ) )  | 
						
						
							| 21 | 
							
								8 10 20
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ⊆  𝑈 )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							ssind | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ⊆  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑥  ∈  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  ↔  ( 𝑥  ∈  ( 𝑆  ⊕  𝑇 )  ∧  𝑥  ∈  𝑈 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 25 | 
							
								24 1
							 | 
							lsmelval | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑥  ∈  ( 𝑆  ⊕  𝑇 )  ↔  ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  𝑇 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 26 | 
							
								2 3 25
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑥  ∈  ( 𝑆  ⊕  𝑇 )  ↔  ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  𝑇 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 27 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 28 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑦  ∈  𝑆 )  | 
						
						
							| 30 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑧  ∈  𝑇 )  | 
						
						
							| 31 | 
							
								27 11
							 | 
							syl | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝐺  ∈  Grp )  | 
						
						
							| 32 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 33 | 
							
								12
							 | 
							subgss | 
							⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →  𝑈  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑈  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 35 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑆  ⊆  𝑈 )  | 
						
						
							| 36 | 
							
								35 29
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑦  ∈  𝑈 )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑦  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 40 | 
							
								12 24 38 39
							 | 
							grplinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 41 | 
							
								31 37 40
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 )  =  ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 43 | 
							
								39
							 | 
							subginvcl | 
							⊢ ( ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑦  ∈  𝑈 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑈 )  | 
						
						
							| 44 | 
							
								32 36 43
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑈 )  | 
						
						
							| 45 | 
							
								34 44
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simpll2 | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 47 | 
							
								12
							 | 
							subgss | 
							⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  →  𝑇  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑇  ⊆  ( Base ‘ 𝐺 ) )  | 
						
						
							| 49 | 
							
								48 30
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑧  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 50 | 
							
								12 24
							 | 
							grpass | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 51 | 
							
								31 45 37 49 50
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 52 | 
							
								12 24 38
							 | 
							grplid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 )  =  𝑧 )  | 
						
						
							| 53 | 
							
								31 49 52
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 )  =  𝑧 )  | 
						
						
							| 54 | 
							
								42 51 53
							 | 
							3eqtr3d | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  =  𝑧 )  | 
						
						
							| 55 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 )  | 
						
						
							| 56 | 
							
								24
							 | 
							subgcl | 
							⊢ ( ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑈  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  𝑈 )  | 
						
						
							| 57 | 
							
								32 44 55 56
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  𝑈 )  | 
						
						
							| 58 | 
							
								54 57
							 | 
							eqeltrrd | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑧  ∈  𝑈 )  | 
						
						
							| 59 | 
							
								30 58
							 | 
							elind | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  𝑧  ∈  ( 𝑇  ∩  𝑈 ) )  | 
						
						
							| 60 | 
							
								24 1
							 | 
							lsmelvali | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑇  ∩  𝑈 )  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  ( 𝑇  ∩  𝑈 ) ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) )  | 
						
						
							| 61 | 
							
								27 28 29 59 60
							 | 
							syl22anc | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							expr | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 ) )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( 𝑥  ∈  𝑈  ↔  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈 ) )  | 
						
						
							| 64 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( 𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  ↔  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( ( 𝑥  ∈  𝑈  →  𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) )  ↔  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑈  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑇 ) )  →  ( 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( 𝑥  ∈  𝑈  →  𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							rexlimdvva | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  𝑇 𝑥  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  →  ( 𝑥  ∈  𝑈  →  𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) ) )  | 
						
						
							| 68 | 
							
								26 67
							 | 
							sylbid | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑥  ∈  ( 𝑆  ⊕  𝑇 )  →  ( 𝑥  ∈  𝑈  →  𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							impd | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( ( 𝑥  ∈  ( 𝑆  ⊕  𝑇 )  ∧  𝑥  ∈  𝑈 )  →  𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) )  | 
						
						
							| 70 | 
							
								23 69
							 | 
							biimtrid | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑥  ∈  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  →  𝑥  ∈  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ssrdv | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  ⊆  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) ) )  | 
						
						
							| 72 | 
							
								22 71
							 | 
							eqssd | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑆  ⊆  𝑈 )  →  ( 𝑆  ⊕  ( 𝑇  ∩  𝑈 ) )  =  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) )  |