| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmmod.p | 
							⊢  ⊕   =  ( LSSum ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( oppg ‘ 𝐺 )  =  ( oppg ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								3
							 | 
							oppgsubg | 
							⊢ ( SubGrp ‘ 𝐺 )  =  ( SubGrp ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							eleqtrdi | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑈  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								6 4
							 | 
							eleqtrdi | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑇  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								8 4
							 | 
							eleqtrdi | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑆  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  𝑈  ⊆  𝑆 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( LSSum ‘ ( oppg ‘ 𝐺 ) )  =  ( LSSum ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							lsmmod | 
							⊢ ( ( ( 𝑈  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) )  ∧  𝑇  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) )  ∧  𝑆  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) )  ∧  𝑈  ⊆  𝑆 )  →  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇  ∩  𝑆 ) )  =  ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 ) )  | 
						
						
							| 13 | 
							
								5 7 9 10 12
							 | 
							syl31anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇  ∩  𝑆 ) )  =  ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcomd | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 )  =  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇  ∩  𝑆 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							incom | 
							⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 )  =  ( 𝑆  ∩  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							incom | 
							⊢ ( 𝑇  ∩  𝑆 )  =  ( 𝑆  ∩  𝑇 )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2i | 
							⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑇  ∩  𝑆 ) )  =  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑆  ∩  𝑇 ) )  | 
						
						
							| 18 | 
							
								14 15 17
							 | 
							3eqtr3g | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  ( 𝑆  ∩  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) )  =  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑆  ∩  𝑇 ) ) )  | 
						
						
							| 19 | 
							
								3 1
							 | 
							oppglsm | 
							⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  =  ( 𝑇  ⊕  𝑈 )  | 
						
						
							| 20 | 
							
								19
							 | 
							ineq2i | 
							⊢ ( 𝑆  ∩  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) )  =  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  | 
						
						
							| 21 | 
							
								3 1
							 | 
							oppglsm | 
							⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) ( 𝑆  ∩  𝑇 ) )  =  ( ( 𝑆  ∩  𝑇 )  ⊕  𝑈 )  | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							3eqtr3g | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑈  ⊆  𝑆 )  →  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  ( ( 𝑆  ∩  𝑇 )  ⊕  𝑈 ) )  |