| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmpr.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lsmpr.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lsmpr.p | ⊢  ⊕   =  ( LSSum ‘ 𝑊 ) | 
						
							| 4 |  | lsmpr.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lsmpr.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | lsmpr.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 | 5 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑉 ) | 
						
							| 8 | 6 | snssd | ⊢ ( 𝜑  →  { 𝑌 }  ⊆  𝑉 ) | 
						
							| 9 | 1 2 | lspun | ⊢ ( ( 𝑊  ∈  LMod  ∧  { 𝑋 }  ⊆  𝑉  ∧  { 𝑌 }  ⊆  𝑉 )  →  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } )  ∪  ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 10 | 4 7 8 9 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } )  ∪  ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 11 |  | df-pr | ⊢ { 𝑋 ,  𝑌 }  =  ( { 𝑋 }  ∪  { 𝑌 } ) | 
						
							| 12 | 11 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( 𝑁 ‘ ( { 𝑋 }  ∪  { 𝑌 } ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 15 | 1 14 2 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 17 | 1 14 2 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 18 | 4 6 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 19 | 14 2 3 | lsmsp | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } )  ∪  ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 20 | 4 16 18 19 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } )  ∪  ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 21 | 10 13 20 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( ( 𝑁 ‘ { 𝑋 } )  ⊕  ( 𝑁 ‘ { 𝑌 } ) ) ) |