| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lsmpropd.b1 | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							lsmpropd.b2 | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lsmpropd.p | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lsmpropd.v1 | 
							⊢ ( 𝜑  →  𝐾  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							lsmpropd.v2 | 
							⊢ ( 𝜑  →  𝐿  ∈  𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝜑 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑡  ∈  𝒫  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							elpwid | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑡  ⊆  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑥  ∈  𝑡 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑢  ∈  𝒫  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							elpwid | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑢  ⊆  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑦  ∈  𝑢 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								6 10 14 3
							 | 
							syl12anc | 
							⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  ∧  𝑥  ∈  𝑡  ∧  𝑦  ∈  𝑢 )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							mpoeq3dva | 
							⊢ ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  →  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) )  =  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rneqd | 
							⊢ ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑢  ∈  𝒫  𝐵 )  →  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) )  =  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							mpoeq3dva | 
							⊢ ( 𝜑  →  ( 𝑡  ∈  𝒫  𝐵 ,  𝑢  ∈  𝒫  𝐵  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝒫  𝐵 ,  𝑢  ∈  𝒫  𝐵  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							pweqd | 
							⊢ ( 𝜑  →  𝒫  𝐵  =  𝒫  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							mpoeq12 | 
							⊢ ( ( 𝒫  𝐵  =  𝒫  ( Base ‘ 𝐾 )  ∧  𝒫  𝐵  =  𝒫  ( Base ‘ 𝐾 ) )  →  ( 𝑡  ∈  𝒫  𝐵 ,  𝑢  ∈  𝒫  𝐵  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐾 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) )  | 
						
						
							| 21 | 
							
								19 19 20
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑡  ∈  𝒫  𝐵 ,  𝑢  ∈  𝒫  𝐵  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐾 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) )  | 
						
						
							| 22 | 
							
								2
							 | 
							pweqd | 
							⊢ ( 𝜑  →  𝒫  𝐵  =  𝒫  ( Base ‘ 𝐿 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							mpoeq12 | 
							⊢ ( ( 𝒫  𝐵  =  𝒫  ( Base ‘ 𝐿 )  ∧  𝒫  𝐵  =  𝒫  ( Base ‘ 𝐿 ) )  →  ( 𝑡  ∈  𝒫  𝐵 ,  𝑢  ∈  𝒫  𝐵  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐿 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐿 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) )  | 
						
						
							| 24 | 
							
								22 22 23
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑡  ∈  𝒫  𝐵 ,  𝑢  ∈  𝒫  𝐵  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐿 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐿 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) )  | 
						
						
							| 25 | 
							
								18 21 24
							 | 
							3eqtr3d | 
							⊢ ( 𝜑  →  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐾 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐿 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐿 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( LSSum ‘ 𝐾 )  =  ( LSSum ‘ 𝐾 )  | 
						
						
							| 29 | 
							
								26 27 28
							 | 
							lsmfval | 
							⊢ ( 𝐾  ∈  𝑉  →  ( LSSum ‘ 𝐾 )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐾 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) )  | 
						
						
							| 30 | 
							
								4 29
							 | 
							syl | 
							⊢ ( 𝜑  →  ( LSSum ‘ 𝐾 )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐾 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐾 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 )  | 
						
						
							| 32 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( LSSum ‘ 𝐿 )  =  ( LSSum ‘ 𝐿 )  | 
						
						
							| 34 | 
							
								31 32 33
							 | 
							lsmfval | 
							⊢ ( 𝐿  ∈  𝑊  →  ( LSSum ‘ 𝐿 )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐿 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐿 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) )  | 
						
						
							| 35 | 
							
								5 34
							 | 
							syl | 
							⊢ ( 𝜑  →  ( LSSum ‘ 𝐿 )  =  ( 𝑡  ∈  𝒫  ( Base ‘ 𝐿 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝐿 )  ↦  ran  ( 𝑥  ∈  𝑡 ,  𝑦  ∈  𝑢  ↦  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) )  | 
						
						
							| 36 | 
							
								25 30 35
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( LSSum ‘ 𝐾 )  =  ( LSSum ‘ 𝐿 ) )  |