Step |
Hyp |
Ref |
Expression |
1 |
|
lsmspsn.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsmspsn.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lsmspsn.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lsmspsn.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lsmspsn.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lsmspsn.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
7 |
|
lsmspsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
8 |
|
lsmspsn.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
lsmspsn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lsmspsn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
1 7
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
12 |
8 9 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
13 |
1 7
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
14 |
8 10 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
15 |
2 6
|
lsmelval |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
17 |
3 4 1 5 7
|
lspsnel |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ) ) |
18 |
8 9 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ) ) |
19 |
3 4 1 5 7
|
lspsnel |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
20 |
8 10 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) ) |
22 |
21
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
23 |
22
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑈 = ( 𝑣 + 𝑤 ) ↔ ( ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
24 |
|
r19.41v |
⊢ ( ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ( ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
25 |
24
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ( ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
26 |
|
r19.41v |
⊢ ( ∃ 𝑗 ∈ 𝐾 ( ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
27 |
|
reeanv |
⊢ ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ↔ ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ) |
28 |
27
|
anbi1i |
⊢ ( ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ( ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
29 |
25 26 28
|
3bitrri |
⊢ ( ( ( ∃ 𝑗 ∈ 𝐾 𝑣 = ( 𝑗 · 𝑋 ) ∧ ∃ 𝑘 ∈ 𝐾 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
30 |
23 29
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑈 = ( 𝑣 + 𝑤 ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
31 |
30
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ↔ ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
32 |
|
rexrot4 |
⊢ ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) |
33 |
31 32
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) 𝑈 = ( 𝑣 + 𝑤 ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ) ) |
34 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑊 ∈ LMod ) |
35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑗 ∈ 𝐾 ) |
36 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑋 ∈ 𝑉 ) |
37 |
1 5 3 4 7 34 35 36
|
lspsneli |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑘 ∈ 𝐾 ) |
39 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → 𝑌 ∈ 𝑉 ) |
40 |
1 5 3 4 7 34 38 39
|
lspsneli |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑘 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
41 |
|
oveq1 |
⊢ ( 𝑣 = ( 𝑗 · 𝑋 ) → ( 𝑣 + 𝑤 ) = ( ( 𝑗 · 𝑋 ) + 𝑤 ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑗 · 𝑋 ) → ( 𝑈 = ( 𝑣 + 𝑤 ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + 𝑤 ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑘 · 𝑌 ) → ( ( 𝑗 · 𝑋 ) + 𝑤 ) = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑤 = ( 𝑘 · 𝑌 ) → ( 𝑈 = ( ( 𝑗 · 𝑋 ) + 𝑤 ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
45 |
42 44
|
ceqsrex2v |
⊢ ( ( ( 𝑗 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑘 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
46 |
37 40 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
47 |
46
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∃ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ( ( 𝑣 = ( 𝑗 · 𝑋 ) ∧ 𝑤 = ( 𝑘 · 𝑌 ) ) ∧ 𝑈 = ( 𝑣 + 𝑤 ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |
48 |
16 33 47
|
3bitrd |
⊢ ( 𝜑 → ( 𝑈 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑗 ∈ 𝐾 ∃ 𝑘 ∈ 𝐾 𝑈 = ( ( 𝑗 · 𝑋 ) + ( 𝑘 · 𝑌 ) ) ) ) |