Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsp2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsmsp2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lsmsp2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
lsmssspx.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) |
5 |
|
lsmssspx.u |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
6 |
|
lsmssspx.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
7 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ) |
8 |
6 4 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ) |
9 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
10 |
6 4 9
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
11 |
1 3
|
lsmless1x |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) ∧ 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ) |
12 |
6 8 5 10 11
|
syl31anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ) |
13 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ⊆ 𝑉 ) |
14 |
6 5 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ⊆ 𝑉 ) |
15 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
16 |
6 5 15
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
17 |
1 3
|
lsmless2x |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝑈 ) ⊆ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) ) |
18 |
6 8 14 16 17
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) ) |
19 |
12 18
|
sstrd |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) ) |
20 |
1 2 3
|
lsmsp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
21 |
6 4 5 20
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
22 |
19 21
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |