Step |
Hyp |
Ref |
Expression |
1 |
|
lsmless2.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
lsmless2.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
1 3 2
|
lsmvalx |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐺 ∈ Mnd ) |
6 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑇 ⊆ 𝐵 ) |
7 |
6
|
sselda |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝐵 ) |
8 |
7
|
adantrr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝐵 ) |
9 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ 𝐵 ) |
10 |
9
|
sselda |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝐵 ) |
11 |
10
|
adantrl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝐵 ) |
12 |
1 3
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
13 |
5 8 11 12
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
14 |
13
|
ralrimivva |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝑇 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
16 |
15
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑇 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : ( 𝑇 × 𝑈 ) ⟶ 𝐵 ) |
17 |
14 16
|
sylib |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : ( 𝑇 × 𝑈 ) ⟶ 𝐵 ) |
18 |
17
|
frnd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝐵 ) |
19 |
4 18
|
eqsstrd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ 𝐵 ) |