Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsubg.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
lsmsubg.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
3 |
|
simp1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
subgsubm |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) |
6 |
|
simp2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
subgsubm |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
10 |
1 2
|
lsmsubm |
⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
11 |
5 8 9 10
|
syl3anc |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
13 |
12 1
|
lsmelval |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
15 |
3
|
adantr |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝐺 ∈ Grp ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
19 |
18
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
20 |
15 19
|
syl |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
21 |
|
simprl |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑇 ) |
22 |
20 21
|
sseldd |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) |
23 |
6
|
adantr |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
24 |
18
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
26 |
|
simprr |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) |
27 |
25 26
|
sseldd |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) |
28 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
29 |
18 12 28
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
30 |
17 22 27 29
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
31 |
9
|
adantr |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
32 |
28
|
subginvcl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑇 ) |
33 |
15 21 32
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑇 ) |
34 |
31 33
|
sseldd |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ ( 𝑍 ‘ 𝑈 ) ) |
35 |
28
|
subginvcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑏 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) |
36 |
23 26 35
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) |
37 |
12 2
|
cntzi |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ ( 𝑍 ‘ 𝑈 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
38 |
34 36 37
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) ) |
39 |
30 38
|
eqtr4d |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ) |
40 |
12 1
|
lsmelvali |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑇 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
41 |
15 23 33 36 40
|
syl22anc |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
42 |
39 41
|
eqeltrd |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( ( invg ‘ 𝐺 ) ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
45 |
42 44
|
syl5ibrcom |
⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
46 |
45
|
rexlimdvva |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
47 |
14 46
|
sylbid |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
48 |
47
|
ralrimiv |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
49 |
3 16
|
syl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝐺 ∈ Grp ) |
50 |
28
|
issubg3 |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
51 |
49 50
|
syl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
52 |
11 48 51
|
mpbir2and |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |