Step |
Hyp |
Ref |
Expression |
1 |
|
lsmless2.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
lsmless2.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
submrcl |
⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐺 ∈ Mnd ) |
5 |
|
simpll |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑇 ⊆ 𝐵 ) |
6 |
|
simpr |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) |
7 |
5 6
|
sseldd |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
10 |
1 8 9
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
11 |
4 7 10
|
syl2anc |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
12 |
1
|
submss |
⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈 ⊆ 𝐵 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑈 ⊆ 𝐵 ) |
14 |
9
|
subm0cl |
⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑈 ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 0g ‘ 𝐺 ) ∈ 𝑈 ) |
16 |
1 8 2
|
lsmelvalix |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
17 |
4 5 13 6 15 16
|
syl32anc |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
18 |
11 17
|
eqeltrrd |
⊢ ( ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
20 |
19
|
ssrdv |
⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |