Metamath Proof Explorer


Theorem lsmub1x

Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
lsmless2.s = ( LSSum ‘ 𝐺 )
Assertion lsmub1x ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
2 lsmless2.s = ( LSSum ‘ 𝐺 )
3 submrcl ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd )
4 3 ad2antlr ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → 𝐺 ∈ Mnd )
5 simpll ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → 𝑇𝐵 )
6 simpr ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → 𝑥𝑇 )
7 5 6 sseldd ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → 𝑥𝐵 )
8 eqid ( +g𝐺 ) = ( +g𝐺 )
9 eqid ( 0g𝐺 ) = ( 0g𝐺 )
10 1 8 9 mndrid ( ( 𝐺 ∈ Mnd ∧ 𝑥𝐵 ) → ( 𝑥 ( +g𝐺 ) ( 0g𝐺 ) ) = 𝑥 )
11 4 7 10 syl2anc ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → ( 𝑥 ( +g𝐺 ) ( 0g𝐺 ) ) = 𝑥 )
12 1 submss ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈𝐵 )
13 12 ad2antlr ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → 𝑈𝐵 )
14 9 subm0cl ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g𝐺 ) ∈ 𝑈 )
15 14 ad2antlr ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → ( 0g𝐺 ) ∈ 𝑈 )
16 1 8 2 lsmelvalix ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ ( 𝑥𝑇 ∧ ( 0g𝐺 ) ∈ 𝑈 ) ) → ( 𝑥 ( +g𝐺 ) ( 0g𝐺 ) ) ∈ ( 𝑇 𝑈 ) )
17 4 5 13 6 15 16 syl32anc ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → ( 𝑥 ( +g𝐺 ) ( 0g𝐺 ) ) ∈ ( 𝑇 𝑈 ) )
18 11 17 eqeltrrd ( ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) ∧ 𝑥𝑇 ) → 𝑥 ∈ ( 𝑇 𝑈 ) )
19 18 ex ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥𝑇𝑥 ∈ ( 𝑇 𝑈 ) ) )
20 19 ssrdv ( ( 𝑇𝐵𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 𝑈 ) )