Metamath Proof Explorer


Theorem lsmub2x

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
lsmless2.s = ( LSSum ‘ 𝐺 )
Assertion lsmub2x ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) → 𝑈 ⊆ ( 𝑇 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
2 lsmless2.s = ( LSSum ‘ 𝐺 )
3 submrcl ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd )
4 3 ad2antrr ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → 𝐺 ∈ Mnd )
5 simpr ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) → 𝑈𝐵 )
6 5 sselda ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → 𝑥𝐵 )
7 eqid ( +g𝐺 ) = ( +g𝐺 )
8 eqid ( 0g𝐺 ) = ( 0g𝐺 )
9 1 7 8 mndlid ( ( 𝐺 ∈ Mnd ∧ 𝑥𝐵 ) → ( ( 0g𝐺 ) ( +g𝐺 ) 𝑥 ) = 𝑥 )
10 4 6 9 syl2anc ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → ( ( 0g𝐺 ) ( +g𝐺 ) 𝑥 ) = 𝑥 )
11 1 submss ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → 𝑇𝐵 )
12 11 ad2antrr ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → 𝑇𝐵 )
13 simplr ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → 𝑈𝐵 )
14 8 subm0cl ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g𝐺 ) ∈ 𝑇 )
15 14 ad2antrr ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → ( 0g𝐺 ) ∈ 𝑇 )
16 simpr ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → 𝑥𝑈 )
17 1 7 2 lsmelvalix ( ( ( 𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵 ) ∧ ( ( 0g𝐺 ) ∈ 𝑇𝑥𝑈 ) ) → ( ( 0g𝐺 ) ( +g𝐺 ) 𝑥 ) ∈ ( 𝑇 𝑈 ) )
18 4 12 13 15 16 17 syl32anc ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → ( ( 0g𝐺 ) ( +g𝐺 ) 𝑥 ) ∈ ( 𝑇 𝑈 ) )
19 10 18 eqeltrrd ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) ∧ 𝑥𝑈 ) → 𝑥 ∈ ( 𝑇 𝑈 ) )
20 19 ex ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) → ( 𝑥𝑈𝑥 ∈ ( 𝑇 𝑈 ) ) )
21 20 ssrdv ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈𝐵 ) → 𝑈 ⊆ ( 𝑇 𝑈 ) )