Metamath Proof Explorer


Theorem lsmunss

Description: Union of subgroups is a subset of subgroup sum. (Contributed by NM, 6-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypothesis lsmub1.p = ( LSSum ‘ 𝐺 )
Assertion lsmunss ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇𝑈 ) ⊆ ( 𝑇 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lsmub1.p = ( LSSum ‘ 𝐺 )
2 1 lsmub1 ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 𝑈 ) )
3 1 lsmub2 ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑇 𝑈 ) )
4 2 3 unssd ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇𝑈 ) ⊆ ( 𝑇 𝑈 ) )