Metamath Proof Explorer


Theorem lsmvalx

Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v 𝐵 = ( Base ‘ 𝐺 )
lsmfval.a + = ( +g𝐺 )
lsmfval.s = ( LSSum ‘ 𝐺 )
Assertion lsmvalx ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 lsmfval.v 𝐵 = ( Base ‘ 𝐺 )
2 lsmfval.a + = ( +g𝐺 )
3 lsmfval.s = ( LSSum ‘ 𝐺 )
4 1 2 3 lsmfval ( 𝐺𝑉 = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) )
5 4 oveqd ( 𝐺𝑉 → ( 𝑇 𝑈 ) = ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) )
6 1 fvexi 𝐵 ∈ V
7 6 elpw2 ( 𝑇 ∈ 𝒫 𝐵𝑇𝐵 )
8 6 elpw2 ( 𝑈 ∈ 𝒫 𝐵𝑈𝐵 )
9 mpoexga ( ( 𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ) → ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V )
10 rnexg ( ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V → ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V )
11 9 10 syl ( ( 𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ) → ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V )
12 mpoeq12 ( ( 𝑡 = 𝑇𝑢 = 𝑈 ) → ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )
13 12 rneqd ( ( 𝑡 = 𝑇𝑢 = 𝑈 ) → ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )
14 eqid ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) )
15 13 14 ovmpoga ( ( 𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ∧ ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )
16 11 15 mpd3an3 ( ( 𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )
17 7 8 16 syl2anbr ( ( 𝑇𝐵𝑈𝐵 ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥𝑡 , 𝑦𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )
18 5 17 sylan9eq ( ( 𝐺𝑉 ∧ ( 𝑇𝐵𝑈𝐵 ) ) → ( 𝑇 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )
19 18 3impb ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑈 ) = ran ( 𝑥𝑇 , 𝑦𝑈 ↦ ( 𝑥 + 𝑦 ) ) )