| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsn0.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 2 |  | lspsn0.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 | 1 3 | lsssn0 | ⊢ ( 𝑊  ∈  LMod  →  {  0  }  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 5 |  | 0ss | ⊢ ∅  ⊆  {  0  } | 
						
							| 6 | 3 2 | lspssp | ⊢ ( ( 𝑊  ∈  LMod  ∧  {  0  }  ∈  ( LSubSp ‘ 𝑊 )  ∧  ∅  ⊆  {  0  } )  →  ( 𝑁 ‘ ∅ )  ⊆  {  0  } ) | 
						
							| 7 | 5 6 | mp3an3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  {  0  }  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( 𝑁 ‘ ∅ )  ⊆  {  0  } ) | 
						
							| 8 | 4 7 | mpdan | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑁 ‘ ∅ )  ⊆  {  0  } ) | 
						
							| 9 |  | 0ss | ⊢ ∅  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 11 | 10 3 2 | lspcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  ∅  ⊆  ( Base ‘ 𝑊 ) )  →  ( 𝑁 ‘ ∅ )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 12 | 9 11 | mpan2 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑁 ‘ ∅ )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 13 | 1 3 | lss0ss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑁 ‘ ∅ )  ∈  ( LSubSp ‘ 𝑊 ) )  →  {  0  }  ⊆  ( 𝑁 ‘ ∅ ) ) | 
						
							| 14 | 12 13 | mpdan | ⊢ ( 𝑊  ∈  LMod  →  {  0  }  ⊆  ( 𝑁 ‘ ∅ ) ) | 
						
							| 15 | 8 14 | eqssd | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑁 ‘ ∅ )  =  {  0  } ) |