Metamath Proof Explorer


Theorem lspabs2

Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015)

Ref Expression
Hypotheses lspabs2.v 𝑉 = ( Base ‘ 𝑊 )
lspabs2.p + = ( +g𝑊 )
lspabs2.o 0 = ( 0g𝑊 )
lspabs2.n 𝑁 = ( LSpan ‘ 𝑊 )
lspabs2.w ( 𝜑𝑊 ∈ LVec )
lspabs2.x ( 𝜑𝑋𝑉 )
lspabs2.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lspabs2.e ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) )
Assertion lspabs2 ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )

Proof

Step Hyp Ref Expression
1 lspabs2.v 𝑉 = ( Base ‘ 𝑊 )
2 lspabs2.p + = ( +g𝑊 )
3 lspabs2.o 0 = ( 0g𝑊 )
4 lspabs2.n 𝑁 = ( LSpan ‘ 𝑊 )
5 lspabs2.w ( 𝜑𝑊 ∈ LVec )
6 lspabs2.x ( 𝜑𝑋𝑉 )
7 lspabs2.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
8 lspabs2.e ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) )
9 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
10 5 9 syl ( 𝜑𝑊 ∈ LMod )
11 1 4 lspsnsubg ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
12 10 6 11 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
13 7 eldifad ( 𝜑𝑌𝑉 )
14 1 4 lspsnsubg ( ( 𝑊 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) )
15 10 13 14 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) )
16 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
17 16 lsmub2 ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
18 12 15 17 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
19 8 oveq2d ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) )
20 16 lsmidm ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) )
21 12 20 syl ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) )
22 1 2 4 10 6 13 lspprabs ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
23 1 2 lmodvacl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
24 10 6 13 23 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
25 1 4 16 10 6 24 lsmpr ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) )
26 1 4 16 10 6 13 lsmpr ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
27 22 25 26 3eqtr3d ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
28 19 21 27 3eqtr3rd ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑋 } ) )
29 18 28 sseqtrd ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) )
30 1 3 4 5 7 6 lspsncmp ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ↔ ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) )
31 29 30 mpbid ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) )
32 31 eqcomd ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )