Step |
Hyp |
Ref |
Expression |
1 |
|
lspabs2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspabs2.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lspabs2.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lspabs2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
5 |
|
lspabs2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lspabs2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
lspabs2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
8 |
|
lspabs2.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
11 |
1 4
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
12 |
10 6 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
13 |
7
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
14 |
1 4
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
15 |
10 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
17 |
16
|
lsmub2 |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
18 |
12 15 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
19 |
8
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
20 |
16
|
lsmidm |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
21 |
12 20
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
22 |
1 2 4 10 6 13
|
lspprabs |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
23 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
24 |
10 6 13 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
25 |
1 4 16 10 6 24
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
26 |
1 4 16 10 6 13
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
27 |
22 25 26
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
28 |
19 21 27
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
29 |
18 28
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
30 |
1 3 4 5 7 6
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ↔ ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
31 |
29 30
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
32 |
31
|
eqcomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |