| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspabs2.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspabs2.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lspabs2.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | lspabs2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 5 |  | lspabs2.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 6 |  | lspabs2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | lspabs2.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 8 |  | lspabs2.e | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) | 
						
							| 9 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 10 | 5 9 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 11 | 1 4 | lspsnsubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 12 | 10 6 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 13 | 7 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 14 | 1 4 | lspsnsubg | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 15 | 10 13 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 17 | 16 | lsmub2 | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 )  ∧  ( 𝑁 ‘ { 𝑌 } )  ∈  ( SubGrp ‘ 𝑊 ) )  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 18 | 12 15 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 19 | 8 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) )  =  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) ) | 
						
							| 20 | 16 | lsmidm | ⊢ ( ( 𝑁 ‘ { 𝑋 } )  ∈  ( SubGrp ‘ 𝑊 )  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 21 | 12 20 | syl | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 22 | 1 2 4 10 6 13 | lspprabs | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  ( 𝑋  +  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 23 | 1 2 | lmodvacl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  +  𝑌 )  ∈  𝑉 ) | 
						
							| 24 | 10 6 13 23 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  𝑉 ) | 
						
							| 25 | 1 4 16 10 6 24 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  ( 𝑋  +  𝑌 ) } )  =  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) ) | 
						
							| 26 | 1 4 16 10 6 13 | lsmpr | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  =  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 27 | 22 25 26 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) )  =  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 28 | 19 21 27 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 29 | 18 28 | sseqtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ⊆  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 30 | 1 3 4 5 7 6 | lspsncmp | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑌 } )  ⊆  ( 𝑁 ‘ { 𝑋 } )  ↔  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑋 } ) ) ) | 
						
							| 31 | 29 30 | mpbid | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 32 | 31 | eqcomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) |