Step |
Hyp |
Ref |
Expression |
1 |
|
lspabs2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspabs2.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lspabs2.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lspabs2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
5 |
|
lspabs2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lspabs2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
lspabs3.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
lspabs3.xy |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) |
9 |
|
lspabs3.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
11 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
13 |
1 10 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
14 |
12 6 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
15 |
1 10 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
16 |
12 7 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
17 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
18 |
10 17
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
19 |
12 14 16 18
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
20 |
1 4
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
21 |
12 6 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
22 |
9 21
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
23 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
24 |
12 6 23
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
25 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
26 |
12 7 25
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
27 |
2 17
|
lsmelvali |
⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
28 |
21 22 24 26 27
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
29 |
10 4 12 19 28
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
30 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
31 |
17
|
lsmidm |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
32 |
21 31
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
33 |
30 32
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
34 |
29 33
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
35 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
36 |
12 6 7 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
37 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ ( 𝑋 + 𝑌 ) ≠ 0 ) ) |
38 |
36 8 37
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
39 |
1 3 4 5 38 6
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ↔ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
40 |
34 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
41 |
40
|
eqcomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |