Step |
Hyp |
Ref |
Expression |
1 |
|
lspdisj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspdisj.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lspdisj.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspdisj.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
5 |
|
lspdisj.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lspdisj.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
|
lspdisj.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
8 |
|
lspdisj.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
14 |
11 12 1 13 3
|
lspsnel |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
15 |
10 7 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
17 |
16
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
19 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ¬ 𝑋 ∈ 𝑈 ) |
20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑣 ∈ 𝑈 ) |
21 |
18 20
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
22 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
23 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑊 ∈ LVec ) |
24 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑈 ∈ 𝑆 ) |
25 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑋 ∈ 𝑉 ) |
26 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
27 |
1 13 11 12 22 4 23 24 25 26
|
lssvs0or |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ↔ ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 ∈ 𝑈 ) ) ) |
28 |
21 27
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∨ 𝑋 ∈ 𝑈 ) ) |
29 |
28
|
orcomd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑋 ∈ 𝑈 ∨ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
30 |
29
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( ¬ 𝑋 ∈ 𝑈 → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
31 |
19 30
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
32 |
31
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
33 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
34 |
1 11 13 22 2
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
35 |
33 25 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
36 |
18 32 35
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) → 𝑣 = 0 ) |
37 |
36
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) ) |
38 |
37
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) ) |
39 |
38
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) |
40 |
17 39
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑣 = 0 ) |
41 |
40
|
ex |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 = 0 ) ) |
42 |
|
elin |
⊢ ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑣 ∈ 𝑈 ) ) |
43 |
|
velsn |
⊢ ( 𝑣 ∈ { 0 } ↔ 𝑣 = 0 ) |
44 |
41 42 43
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) → 𝑣 ∈ { 0 } ) ) |
45 |
44
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ⊆ { 0 } ) |
46 |
1 4 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
47 |
10 7 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
48 |
2 4
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) → { 0 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
49 |
10 47 48
|
syl2anc |
⊢ ( 𝜑 → { 0 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
50 |
2 4
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → { 0 } ⊆ 𝑈 ) |
51 |
10 6 50
|
syl2anc |
⊢ ( 𝜑 → { 0 } ⊆ 𝑈 ) |
52 |
49 51
|
ssind |
⊢ ( 𝜑 → { 0 } ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ) |
53 |
45 52
|
eqssd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) |