Step |
Hyp |
Ref |
Expression |
1 |
|
lspexch.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspexch.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lspexch.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspexch.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspexch.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
6 |
|
lspexch.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
lspexch.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
8 |
|
lspexch.q |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
9 |
|
lspexch.e |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
14 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
16 |
1 10 11 12 13 3 15 6 7
|
lspprel |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ∃ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
17 |
9 16
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
18 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
19 |
|
eqid |
⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) |
20 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LVec ) |
21 |
20 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LMod ) |
22 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
23 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
24 |
23
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ 𝑉 ) |
25 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ∈ 𝑉 ) |
26 |
1 10 18 13 11 12 19 21 22 24 25
|
lmodsubvs |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
27 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = 𝑋 ) |
29 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LMod ) |
30 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ Grp ) |
32 |
1 11 13 12
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
33 |
21 22 25 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
34 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
35 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ 𝑉 ) |
36 |
1 11 13 12
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
37 |
21 34 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
38 |
1 10 18
|
grpsubadd |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑋 ∈ 𝑉 ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ∧ ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) ) → ( ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ↔ ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = 𝑋 ) ) |
39 |
31 24 33 37 38
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ↔ ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = 𝑋 ) ) |
40 |
28 39
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
41 |
26 40
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
42 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
43 |
|
eqid |
⊢ ( invr ‘ ( Scalar ‘ 𝑊 ) ) = ( invr ‘ ( Scalar ‘ 𝑊 ) ) |
44 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
45 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LVec ) |
46 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑍 ∈ 𝑉 ) |
47 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
48 |
|
oveq1 |
⊢ ( 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
49 |
48
|
oveq1d |
⊢ ( 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
50 |
1 11 13 42 2
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
51 |
21 35 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
52 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 0 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
53 |
1 10 2
|
lmod0vlid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
54 |
21 33 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 0 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
55 |
52 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
56 |
49 55
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
57 |
47 56
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
58 |
1 13 11 12 3 21 22 25
|
lspsneli |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
60 |
57 59
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
61 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
62 |
23 61
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ≠ 0 ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ≠ 0 ) |
64 |
1 2 3 45 46 60 63
|
lspsneleq |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) ) ) |
66 |
65
|
necon3d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) → 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
67 |
44 66
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
68 |
|
eldifsn |
⊢ ( 𝑗 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ↔ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
69 |
34 67 68
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑗 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
70 |
11
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
71 |
29 70
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
72 |
12 19
|
grpinvcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
73 |
71 22 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
74 |
1 11 13 12
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ 𝑉 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
75 |
21 73 25 74
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
76 |
1 10
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
77 |
21 24 75 76
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
78 |
1 13 11 12 42 43 20 69 77 35
|
lvecinv |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ↔ 𝑌 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) ) |
79 |
41 78
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
80 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
81 |
1 80 3 21 24 25
|
lspprcl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
82 |
11
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
83 |
20 82
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
84 |
12 42 43
|
drnginvrcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
85 |
83 34 67 84
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
86 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
87 |
1 11 13 86
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
88 |
21 24 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
89 |
88
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
90 |
11
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
91 |
12 86
|
ringidcl |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
92 |
21 90 91
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
93 |
1 10 13 11 12 3 21 92 73 24 25
|
lsppreli |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
94 |
89 93
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
95 |
11 13 12 80
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
96 |
21 81 85 94 95
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
97 |
79 96
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
98 |
97
|
3exp |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ) |
99 |
98
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
100 |
17 99
|
mpd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |