Step |
Hyp |
Ref |
Expression |
1 |
|
lspexchn2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspexchn2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lspexchn2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
4 |
|
lspexchn2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
|
lspexchn2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
6 |
|
lspexchn2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
7 |
|
lspexchn2.q |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
8 |
|
lspexchn2.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) |
9 |
|
prcom |
⊢ { 𝑍 , 𝑌 } = { 𝑌 , 𝑍 } |
10 |
9
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , 𝑍 } ) |
11 |
10
|
eleq2i |
⊢ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
12 |
8 11
|
sylnib |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
13 |
1 2 3 4 5 6 7 12
|
lspexchn1 |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
14 |
|
prcom |
⊢ { 𝑋 , 𝑍 } = { 𝑍 , 𝑋 } |
15 |
14
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) = ( 𝑁 ‘ { 𝑍 , 𝑋 } ) |
16 |
15
|
eleq2i |
⊢ ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ↔ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) |
17 |
13 16
|
sylnib |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑋 } ) ) |