| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspval.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lspval.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 | 1 2 3 | lspfval | ⊢ ( 𝑊  ∈  LMod  →  𝑁  =  ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 } ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑠  ∈  𝒫  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ⊆  𝑆 | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑠  ∈  𝒫  𝑉 )  →  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ⊆  𝑆 ) | 
						
							| 8 | 1 2 | lss1 | ⊢ ( 𝑊  ∈  LMod  →  𝑉  ∈  𝑆 ) | 
						
							| 9 |  | elpwi | ⊢ ( 𝑠  ∈  𝒫  𝑉  →  𝑠  ⊆  𝑉 ) | 
						
							| 10 |  | sseq2 | ⊢ ( 𝑝  =  𝑉  →  ( 𝑠  ⊆  𝑝  ↔  𝑠  ⊆  𝑉 ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( 𝑉  ∈  𝑆  ∧  𝑠  ⊆  𝑉 )  →  ∃ 𝑝  ∈  𝑆 𝑠  ⊆  𝑝 ) | 
						
							| 12 | 8 9 11 | syl2an | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑠  ∈  𝒫  𝑉 )  →  ∃ 𝑝  ∈  𝑆 𝑠  ⊆  𝑝 ) | 
						
							| 13 |  | rabn0 | ⊢ ( { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ≠  ∅  ↔  ∃ 𝑝  ∈  𝑆 𝑠  ⊆  𝑝 ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑠  ∈  𝒫  𝑉 )  →  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ≠  ∅ ) | 
						
							| 15 | 2 | lssintcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ⊆  𝑆  ∧  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ≠  ∅ )  →  ∩  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ∈  𝑆 ) | 
						
							| 16 | 5 7 14 15 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑠  ∈  𝒫  𝑉 )  →  ∩  { 𝑝  ∈  𝑆  ∣  𝑠  ⊆  𝑝 }  ∈  𝑆 ) | 
						
							| 17 | 4 16 | fmpt3d | ⊢ ( 𝑊  ∈  LMod  →  𝑁 : 𝒫  𝑉 ⟶ 𝑆 ) |