Step |
Hyp |
Ref |
Expression |
1 |
|
lspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspval.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lspval.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
1 2 3
|
lspfval |
⊢ ( 𝑊 ∈ LMod → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ) ) |
5 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → 𝑊 ∈ LMod ) |
6 |
|
ssrab2 |
⊢ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 |
7 |
6
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 ) |
8 |
1 2
|
lss1 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |
9 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑉 → 𝑠 ⊆ 𝑉 ) |
10 |
|
sseq2 |
⊢ ( 𝑝 = 𝑉 → ( 𝑠 ⊆ 𝑝 ↔ 𝑠 ⊆ 𝑉 ) ) |
11 |
10
|
rspcev |
⊢ ( ( 𝑉 ∈ 𝑆 ∧ 𝑠 ⊆ 𝑉 ) → ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
12 |
8 9 11
|
syl2an |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
13 |
|
rabn0 |
⊢ ( { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ↔ ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ) |
15 |
2
|
lssintcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 ∧ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ) → ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ∈ 𝑆 ) |
16 |
5 7 14 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ∈ 𝑆 ) |
17 |
4 16
|
fmpt3d |
⊢ ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉 ⟶ 𝑆 ) |