Metamath Proof Explorer


Theorem lspid

Description: The span of a subspace is itself. ( spanid analog.) (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspid.s 𝑆 = ( LSubSp ‘ 𝑊 )
lspid.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lspid ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 𝑁𝑈 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 lspid.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lspid.n 𝑁 = ( LSpan ‘ 𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 3 1 lssss ( 𝑈𝑆𝑈 ⊆ ( Base ‘ 𝑊 ) )
5 3 1 2 lspval ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁𝑈 ) = { 𝑡𝑆𝑈𝑡 } )
6 4 5 sylan2 ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 𝑁𝑈 ) = { 𝑡𝑆𝑈𝑡 } )
7 intmin ( 𝑈𝑆 { 𝑡𝑆𝑈𝑡 } = 𝑈 )
8 7 adantl ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → { 𝑡𝑆𝑈𝑡 } = 𝑈 )
9 6 8 eqtrd ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 𝑁𝑈 ) = 𝑈 )