Description: The span of a subspace is itself. ( spanid analog.) (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspid.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
lspid.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
Assertion | lspid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspid.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
2 | lspid.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
4 | 3 1 | lssss | ⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
5 | 3 1 2 | lspval | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |
6 | 4 5 | sylan2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |
7 | intmin | ⊢ ( 𝑈 ∈ 𝑆 → ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } = 𝑈 ) | |
8 | 7 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } = 𝑈 ) |
9 | 6 8 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |