| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspindp3.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspindp3.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lspindp3.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | lspindp3.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 5 |  | lspindp3.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 6 |  | lspindp3.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | lspindp3.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 8 |  | lspindp3.e | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 9 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) )  →  𝑊  ∈  LVec ) | 
						
							| 10 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 11 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) | 
						
							| 13 | 1 2 3 4 9 10 11 12 | lspabs2 | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 15 | 14 | necon3d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) ) | 
						
							| 16 | 8 15 | mpd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) |