| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspindp3.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspindp3.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lspindp3.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lspindp3.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
lspindp3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lspindp3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
lspindp3.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 8 |
|
lspindp3.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → 𝑊 ∈ LVec ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → 𝑋 ∈ 𝑉 ) |
| 11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 13 |
1 2 3 4 9 10 11 12
|
lspabs2 |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 14 |
13
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 15 |
14
|
necon3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 16 |
8 15
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |