Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindp3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspindp3.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspindp4.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspindp4.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspindp4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspindp4.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspindp4.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspindp4.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| Assertion | lspindp4 | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspindp3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspindp3.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspindp4.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspindp4.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspindp4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspindp4.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspindp4.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | lspindp4.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 9 | 1 2 3 4 5 6 | lspprabs | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | 
| 10 | 8 9 | neleqtrrd | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) ) |