Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspindp3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
lspindp3.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
lspindp4.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
lspindp4.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
lspindp4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
lspindp4.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
lspindp4.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
lspindp4.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
Assertion | lspindp4 | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspindp3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | lspindp3.p | ⊢ + = ( +g ‘ 𝑊 ) | |
3 | lspindp4.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
4 | lspindp4.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
5 | lspindp4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
6 | lspindp4.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
7 | lspindp4.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
8 | lspindp4.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
9 | 1 2 3 4 5 6 | lspprabs | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
10 | 8 9 | neleqtrrd | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) ) |