Metamath Proof Explorer


Theorem lspindp4

Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses lspindp3.v 𝑉 = ( Base ‘ 𝑊 )
lspindp3.p + = ( +g𝑊 )
lspindp4.n 𝑁 = ( LSpan ‘ 𝑊 )
lspindp4.w ( 𝜑𝑊 ∈ LMod )
lspindp4.x ( 𝜑𝑋𝑉 )
lspindp4.y ( 𝜑𝑌𝑉 )
lspindp4.z ( 𝜑𝑍𝑉 )
lspindp4.e ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
Assertion lspindp4 ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) )

Proof

Step Hyp Ref Expression
1 lspindp3.v 𝑉 = ( Base ‘ 𝑊 )
2 lspindp3.p + = ( +g𝑊 )
3 lspindp4.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspindp4.w ( 𝜑𝑊 ∈ LMod )
5 lspindp4.x ( 𝜑𝑋𝑉 )
6 lspindp4.y ( 𝜑𝑌𝑉 )
7 lspindp4.z ( 𝜑𝑍𝑉 )
8 lspindp4.e ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
9 1 2 3 4 5 6 lspprabs ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
10 8 9 neleqtrrd ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) )