Step |
Hyp |
Ref |
Expression |
1 |
|
lspindpi.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspindpi.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lspindpi.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
4 |
|
lspindpi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
|
lspindpi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
6 |
|
lspindpi.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
7 |
|
lspindpi.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
11 |
10
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
12 |
9 11
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
13 |
1 10 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
14 |
9 5 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
15 |
12 14
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
16 |
1 10 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
17 |
9 6 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
18 |
12 17
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
19 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
20 |
19
|
lsmub1 |
⊢ ( ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
21 |
15 18 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
22 |
1 2 19 9 5 6
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
23 |
21 22
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
24 |
|
sseq1 |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
25 |
23 24
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
26 |
1 10 2 9 5 6
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
27 |
1 10 2 9 26 4
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
28 |
25 27
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
29 |
28
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
30 |
7 29
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
31 |
19
|
lsmub2 |
⊢ ( ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑍 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
32 |
15 18 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
33 |
32 22
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
34 |
|
sseq1 |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑍 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
35 |
33 34
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
36 |
35 27
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
37 |
36
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
38 |
7 37
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
39 |
30 38
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |