Step |
Hyp |
Ref |
Expression |
1 |
|
lsppr.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsppr.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lsppr.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lsppr.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lsppr.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lsppr.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
7 |
|
lsppr.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
lsppr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
lsppr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
11 |
10
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
12 |
8
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
13 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
14 |
1 6
|
lspun |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
15 |
7 12 13 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
17 |
1 16 6
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
18 |
7 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
19 |
1 16 6
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
20 |
7 9 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
21 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
22 |
16 6 21
|
lsmsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
23 |
7 18 20 22
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
24 |
1 2 3 4 5 21 6 7 8 9
|
lsmspsn |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) ) |
25 |
24
|
abbi2dv |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |
26 |
15 23 25
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |
27 |
11 26
|
eqtrid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |