| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsppr0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsppr0.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lsppr0.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lsppr0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lsppr0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 7 |
1 2
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
| 8 |
4 7
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
| 9 |
1 3 6 4 5 8
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 0 } ) ) ) |
| 10 |
2 3
|
lspsn0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 0 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) ) |
| 13 |
1 3
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 |
4 5 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
2 6
|
lsm01 |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 17 |
9 12 16
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |