| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspprat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspprat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lspprat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspprat.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspprat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
|
lspprat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
lspprat.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
lspprat.p |
⊢ ( 𝜑 → 𝑈 ⊊ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 9 |
|
lsppratlem1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 10 |
|
lsppratlem1.x2 |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑈 ∖ { 0 } ) ) |
| 11 |
|
lsppratlem1.y2 |
⊢ ( 𝜑 → 𝑦 ∈ ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 12 |
|
lsppratlem3.x3 |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 13 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 15 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 16 |
1 3
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 18 |
17 12
|
sseldd |
⊢ ( 𝜑 → 𝑥 ∈ 𝑉 ) |
| 19 |
18
|
snssd |
⊢ ( 𝜑 → { 𝑥 } ⊆ 𝑉 ) |
| 20 |
8
|
pssssd |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 21 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 22 |
19 21
|
unssd |
⊢ ( 𝜑 → ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ) |
| 23 |
1 2 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 24 |
14 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 25 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
| 26 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( { 𝑥 } ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 27 |
14 22 26
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 } ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 28 |
27
|
unssbd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 29 |
|
ssun1 |
⊢ { 𝑥 } ⊆ ( { 𝑥 } ∪ { 𝑋 } ) |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → { 𝑥 } ⊆ ( { 𝑥 } ∪ { 𝑋 } ) ) |
| 31 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( { 𝑥 } ∪ { 𝑋 } ) ⊆ 𝑉 ∧ { 𝑥 } ⊆ ( { 𝑥 } ∪ { 𝑋 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 32 |
14 22 30 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 33 |
|
0ss |
⊢ ∅ ⊆ 𝑉 |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝑉 ) |
| 35 |
|
uncom |
⊢ ( ∅ ∪ { 𝑌 } ) = ( { 𝑌 } ∪ ∅ ) |
| 36 |
|
un0 |
⊢ ( { 𝑌 } ∪ ∅ ) = { 𝑌 } |
| 37 |
35 36
|
eqtri |
⊢ ( ∅ ∪ { 𝑌 } ) = { 𝑌 } |
| 38 |
37
|
fveq2i |
⊢ ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑌 } ) |
| 39 |
12 38
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑥 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) ) |
| 40 |
10
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑥 ∈ { 0 } ) |
| 41 |
9 3
|
lsp0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| 42 |
14 41
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ ∅ ) = { 0 } ) |
| 43 |
40 42
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝑥 ∈ ( 𝑁 ‘ ∅ ) ) |
| 44 |
39 43
|
eldifd |
⊢ ( 𝜑 → 𝑥 ∈ ( ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) ) |
| 45 |
1 2 3
|
lspsolv |
⊢ ( ( 𝑊 ∈ LVec ∧ ( ∅ ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ∈ ( ( 𝑁 ‘ ( ∅ ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ ∅ ) ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) ) |
| 46 |
4 34 7 44 45
|
syl13anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) ) |
| 47 |
|
uncom |
⊢ ( ∅ ∪ { 𝑥 } ) = ( { 𝑥 } ∪ ∅ ) |
| 48 |
|
un0 |
⊢ ( { 𝑥 } ∪ ∅ ) = { 𝑥 } |
| 49 |
47 48
|
eqtri |
⊢ ( ∅ ∪ { 𝑥 } ) = { 𝑥 } |
| 50 |
49
|
fveq2i |
⊢ ( 𝑁 ‘ ( ∅ ∪ { 𝑥 } ) ) = ( 𝑁 ‘ { 𝑥 } ) |
| 51 |
46 50
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 } ) ) |
| 52 |
32 51
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 53 |
52
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 54 |
28 53
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 } ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 55 |
25 54
|
eqsstrid |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 56 |
2 3
|
lspssp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∈ 𝑆 ∧ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 57 |
14 24 55 56
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 58 |
20 57
|
sstrd |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ) |
| 59 |
58
|
ssdifd |
⊢ ( 𝜑 → ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ⊆ ( ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 60 |
59 11
|
sseldd |
⊢ ( 𝜑 → 𝑦 ∈ ( ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 61 |
1 2 3
|
lspsolv |
⊢ ( ( 𝑊 ∈ LVec ∧ ( { 𝑥 } ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ ( ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑋 } ) ) ∖ ( 𝑁 ‘ { 𝑥 } ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑦 } ) ) ) |
| 62 |
4 19 6 60 61
|
syl13anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑦 } ) ) ) |
| 63 |
|
df-pr |
⊢ { 𝑥 , 𝑦 } = ( { 𝑥 } ∪ { 𝑦 } ) |
| 64 |
63
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) = ( 𝑁 ‘ ( { 𝑥 } ∪ { 𝑦 } ) ) |
| 65 |
62 64
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 66 |
1 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 67 |
5 66
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 68 |
67
|
ssdifssd |
⊢ ( 𝜑 → ( 𝑈 ∖ ( 𝑁 ‘ { 𝑥 } ) ) ⊆ 𝑉 ) |
| 69 |
68 11
|
sseldd |
⊢ ( 𝜑 → 𝑦 ∈ 𝑉 ) |
| 70 |
18 69
|
prssd |
⊢ ( 𝜑 → { 𝑥 , 𝑦 } ⊆ 𝑉 ) |
| 71 |
|
snsspr1 |
⊢ { 𝑥 } ⊆ { 𝑥 , 𝑦 } |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → { 𝑥 } ⊆ { 𝑥 , 𝑦 } ) |
| 73 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑥 , 𝑦 } ⊆ 𝑉 ∧ { 𝑥 } ⊆ { 𝑥 , 𝑦 } ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 74 |
14 70 72 73
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑥 } ) ⊆ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 75 |
74 51
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) |
| 76 |
65 75
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑥 , 𝑦 } ) ) ) |