Description: The span of a pair is a subspace (frequently used special case of lspcl ). (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprcl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspprcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspprcl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ 𝑆 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprcl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspprcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspprcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | 5 6 | prssd | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) | 
| 8 | 1 2 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ 𝑆 ) | 
| 9 | 4 7 8 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ 𝑆 ) |