Metamath Proof Explorer


Theorem lsppreli

Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015)

Ref Expression
Hypotheses lsppreli.v 𝑉 = ( Base ‘ 𝑊 )
lsppreli.p + = ( +g𝑊 )
lsppreli.t · = ( ·𝑠𝑊 )
lsppreli.f 𝐹 = ( Scalar ‘ 𝑊 )
lsppreli.k 𝐾 = ( Base ‘ 𝐹 )
lsppreli.n 𝑁 = ( LSpan ‘ 𝑊 )
lsppreli.w ( 𝜑𝑊 ∈ LMod )
lsppreli.a ( 𝜑𝐴𝐾 )
lsppreli.b ( 𝜑𝐵𝐾 )
lsppreli.x ( 𝜑𝑋𝑉 )
lsppreli.y ( 𝜑𝑌𝑉 )
Assertion lsppreli ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )

Proof

Step Hyp Ref Expression
1 lsppreli.v 𝑉 = ( Base ‘ 𝑊 )
2 lsppreli.p + = ( +g𝑊 )
3 lsppreli.t · = ( ·𝑠𝑊 )
4 lsppreli.f 𝐹 = ( Scalar ‘ 𝑊 )
5 lsppreli.k 𝐾 = ( Base ‘ 𝐹 )
6 lsppreli.n 𝑁 = ( LSpan ‘ 𝑊 )
7 lsppreli.w ( 𝜑𝑊 ∈ LMod )
8 lsppreli.a ( 𝜑𝐴𝐾 )
9 lsppreli.b ( 𝜑𝐵𝐾 )
10 lsppreli.x ( 𝜑𝑋𝑉 )
11 lsppreli.y ( 𝜑𝑌𝑉 )
12 1 6 lspsnsubg ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
13 7 10 12 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
14 1 6 lspsnsubg ( ( 𝑊 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) )
15 7 11 14 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) )
16 1 3 4 5 6 7 8 10 lspsneli ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) )
17 1 3 4 5 6 7 9 11 lspsneli ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) )
18 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
19 2 18 lsmelvali ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
20 13 15 16 17 19 syl22anc ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
21 1 6 18 7 10 11 lsmpr ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) )
22 20 21 eleqtrrd ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )