| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsppreli.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsppreli.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lsppreli.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lsppreli.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
lsppreli.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
lsppreli.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 7 |
|
lsppreli.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 8 |
|
lsppreli.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 9 |
|
lsppreli.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 10 |
|
lsppreli.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 |
|
lsppreli.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 12 |
1 6
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 13 |
7 10 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 |
1 6
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 |
7 11 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 |
1 3 4 5 6 7 8 10
|
ellspsni |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 17 |
1 3 4 5 6 7 9 11
|
ellspsni |
⊢ ( 𝜑 → ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 18 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 19 |
2 18
|
lsmelvali |
⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝐵 · 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 20 |
13 15 16 17 19
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 21 |
1 6 18 7 10 11
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 22 |
20 21
|
eleqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |