| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspprid.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspprid.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lspprid.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 4 |
|
lspprid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 5 |
|
lspprid.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 6 |
4 5
|
prssd |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 7 |
|
snsspr1 |
⊢ { 𝑋 } ⊆ { 𝑋 , 𝑌 } |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝑋 } ⊆ { 𝑋 , 𝑌 } ) |
| 9 |
1 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ∧ { 𝑋 } ⊆ { 𝑋 , 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 10 |
3 6 8 9
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 11 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 12 |
1 11 2 3 4 5
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 |
1 11 2 3 12 4
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 14 |
10 13
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |