Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprid.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprid.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprid.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspprid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspprid2 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspprid.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprid.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lspprid.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | lspprid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | lspprid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 6 | 1 2 3 5 4 | lspprid1 | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) ) | 
| 7 | prcom | ⊢ { 𝑌 , 𝑋 } = { 𝑋 , 𝑌 } | |
| 8 | 7 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑌 , 𝑋 } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) | 
| 9 | 6 8 | eleqtrdi | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |