Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lspprss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprss.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspprss.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspprss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| lspprss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | lspprss | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspprss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lspprss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lspprss.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | lspprss.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 5 | lspprss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 6 | lspprss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 7 | 5 6 | prssd | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑈 ) | 
| 8 | 1 2 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ { 𝑋 , 𝑌 } ⊆ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) | 
| 9 | 3 4 7 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑈 ) |