| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspprvacl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspprvacl.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lspprvacl.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspprvacl.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lspprvacl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | lspprvacl.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 8 | 1 7 3 4 5 6 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 9 | 1 3 4 5 6 | lspprid1 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 10 | 1 3 4 5 6 | lspprid2 | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 11 | 2 7 | lssvacl | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) )  ∧  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∧  𝑌  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) )  →  ( 𝑋  +  𝑌 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 12 | 4 8 9 10 11 | syl22anc | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) |