| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsn.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lspsn.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
lspsn.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
lspsn.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
lspsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 7 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 8 |
3 1 4 2 6
|
lss1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 10 |
1 2 9
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 11 |
3 1 4 9
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑘 = ( 1r ‘ 𝐹 ) → ( 𝑘 · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 14 |
13
|
rspceeqv |
⊢ ( ( ( 1r ‘ 𝐹 ) ∈ 𝐾 ∧ 𝑋 = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) → ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) |
| 15 |
10 12 14
|
syl2an2r |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) |
| 16 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑋 → ( 𝑣 = ( 𝑘 · 𝑋 ) ↔ 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( 𝑣 = 𝑋 → ( ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 18 |
17
|
elabg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑋 ) ) ) |
| 20 |
15 19
|
mpbird |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |
| 21 |
6 5 7 8 20
|
ellspsn5 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |
| 22 |
7
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 23 |
3 6 5
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ 𝐾 ) |
| 26 |
3 5
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 28 |
1 4 2 6
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑘 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 29 |
22 24 25 27 28
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑘 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 30 |
|
eleq1a |
⊢ ( ( 𝑘 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑣 = ( 𝑘 · 𝑋 ) → 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝑣 = ( 𝑘 · 𝑋 ) → 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 32 |
31
|
rexlimdva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) → 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 33 |
32
|
abssdv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 34 |
21 33
|
eqssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |