| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsncmp.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsncmp.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | lspsncmp.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspsncmp.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 5 |  | lspsncmp.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 6 |  | lspsncmp.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑊  ∈  LVec ) | 
						
							| 8 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 10 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 12 | 1 9 3 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 13 | 11 6 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 14 | 5 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 15 | 1 9 3 11 13 14 | ellspsn5b | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 16 | 15 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 17 |  | eldifsni | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  →  𝑋  ≠   0  ) | 
						
							| 18 | 5 17 | syl | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑋  ≠   0  ) | 
						
							| 20 | 1 2 3 7 8 16 19 | lspsneleq | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 22 |  | eqimss | ⊢ ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 23 | 21 22 | impbid1 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) |