Metamath Proof Explorer


Theorem lspsncmp

Description: Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015)

Ref Expression
Hypotheses lspsncmp.v 𝑉 = ( Base ‘ 𝑊 )
lspsncmp.o 0 = ( 0g𝑊 )
lspsncmp.n 𝑁 = ( LSpan ‘ 𝑊 )
lspsncmp.w ( 𝜑𝑊 ∈ LVec )
lspsncmp.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lspsncmp.y ( 𝜑𝑌𝑉 )
Assertion lspsncmp ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )

Proof

Step Hyp Ref Expression
1 lspsncmp.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsncmp.o 0 = ( 0g𝑊 )
3 lspsncmp.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspsncmp.w ( 𝜑𝑊 ∈ LVec )
5 lspsncmp.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
6 lspsncmp.y ( 𝜑𝑌𝑉 )
7 4 adantr ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec )
8 6 adantr ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌𝑉 )
9 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
10 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
11 4 10 syl ( 𝜑𝑊 ∈ LMod )
12 1 9 3 lspsncl ( ( 𝑊 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) )
13 11 6 12 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) )
14 5 eldifad ( 𝜑𝑋𝑉 )
15 1 9 3 11 13 14 lspsnel5 ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) )
16 15 biimpar ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) )
17 eldifsni ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋0 )
18 5 17 syl ( 𝜑𝑋0 )
19 18 adantr ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋0 )
20 1 2 3 7 8 16 19 lspsneleq ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
21 20 ex ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )
22 eqimss ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) )
23 21 22 impbid1 ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )