Metamath Proof Explorer
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it
generates. (Contributed by NM, 8-Aug-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lspsnel5.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lspsnel5.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
|
|
lspsnel5.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
|
|
lspsnel5.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
|
|
lspsnel5.a |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
|
|
lspsnel5.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
Assertion |
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnel5.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspsnel5.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
lspsnel5.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspsnel5.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
lspsnel5.a |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
6 |
|
lspsnel5.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
1 2 3 4 5
|
lspsnel6 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |
8 |
6 7
|
mpbirand |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |