Metamath Proof Explorer


Theorem lspsneleq

Description: Membership relation that implies equality of spans. ( spansneleq analog.) (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses lspsneleq.v 𝑉 = ( Base ‘ 𝑊 )
lspsneleq.o 0 = ( 0g𝑊 )
lspsneleq.n 𝑁 = ( LSpan ‘ 𝑊 )
lspsneleq.w ( 𝜑𝑊 ∈ LVec )
lspsneleq.x ( 𝜑𝑋𝑉 )
lspsneleq.y ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) )
lspsneleq.z ( 𝜑𝑌0 )
Assertion lspsneleq ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 lspsneleq.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsneleq.o 0 = ( 0g𝑊 )
3 lspsneleq.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspsneleq.w ( 𝜑𝑊 ∈ LVec )
5 lspsneleq.x ( 𝜑𝑋𝑉 )
6 lspsneleq.y ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) )
7 lspsneleq.z ( 𝜑𝑌0 )
8 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
9 4 8 syl ( 𝜑𝑊 ∈ LMod )
10 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
11 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
12 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
13 10 11 1 12 3 lspsnel ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) )
14 9 5 13 syl2anc ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) )
15 simpr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) )
16 15 sneqd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → { 𝑌 } = { ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) } )
17 16 fveq2d ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) } ) )
18 4 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → 𝑊 ∈ LVec )
19 simplr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
20 7 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → 𝑌0 )
21 simplr ( ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) )
22 simpr ( ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
23 22 oveq1d ( ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) )
24 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
25 1 10 12 24 2 lmod0vs ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) = 0 )
26 9 5 25 syl2anc ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) = 0 )
27 26 ad3antrrr ( ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑋 ) = 0 )
28 21 23 27 3eqtrd ( ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = 0 )
29 28 ex ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑌 = 0 ) )
30 29 necon3d ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → ( 𝑌0𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
31 20 30 mpd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
32 5 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → 𝑋𝑉 )
33 1 10 12 11 24 3 lspsnvs ( ( 𝑊 ∈ LVec ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) )
34 18 19 31 32 33 syl121anc ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) )
35 17 34 eqtrd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) )
36 35 rexlimdva2 ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠𝑊 ) 𝑋 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) )
37 14 36 sylbid ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) )
38 6 37 mpd ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) )