Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneleq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspsneleq.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lspsneleq.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspsneleq.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lspsneleq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
lspsneleq.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
7 |
|
lspsneleq.z |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
10 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
13 |
10 11 1 12 3
|
lspsnel |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
14 |
9 5 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
16 |
15
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → { 𝑌 } = { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) ) |
18 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑊 ∈ LVec ) |
19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑌 ≠ 0 ) |
21 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
25 |
1 10 12 24 2
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
26 |
9 5 25
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) |
28 |
21 23 27
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 = 0 ) |
29 |
28
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑌 = 0 ) ) |
30 |
29
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑌 ≠ 0 → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
31 |
20 30
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
32 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → 𝑋 ∈ 𝑉 ) |
33 |
1 10 12 11 24 3
|
lspsnvs |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
34 |
18 19 31 32 33
|
syl121anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
35 |
17 34
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
36 |
35
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑌 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
37 |
14 36
|
sylbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
38 |
6 37
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |