| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneq.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsneq.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | lspsneq.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | lspsneq.o | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 5 |  | lspsneq.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | lspsneq.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 7 |  | lspsneq.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 8 |  | lspsneq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 9 |  | lspsneq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 10 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 12 | 2 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝑆  ∈  Ring ) | 
						
							| 13 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 14 | 3 13 | ringidcl | ⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  𝐾 ) | 
						
							| 15 | 11 12 14 | 3syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  𝐾 ) | 
						
							| 16 | 2 | lvecdrng | ⊢ ( 𝑊  ∈  LVec  →  𝑆  ∈  DivRing ) | 
						
							| 17 | 4 13 | drngunz | ⊢ ( 𝑆  ∈  DivRing  →  ( 1r ‘ 𝑆 )  ≠   0  ) | 
						
							| 18 | 7 16 17 | 3syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ≠   0  ) | 
						
							| 19 |  | eldifsn | ⊢ ( ( 1r ‘ 𝑆 )  ∈  ( 𝐾  ∖  {  0  } )  ↔  ( ( 1r ‘ 𝑆 )  ∈  𝐾  ∧  ( 1r ‘ 𝑆 )  ≠   0  ) ) | 
						
							| 20 | 15 18 19 | sylanbrc | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  ( 𝐾  ∖  {  0  } ) ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  =  ( 0g ‘ 𝑊 ) )  →  ( 1r ‘ 𝑆 )  ∈  ( 𝐾  ∖  {  0  } ) ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 23 | 1 22 | lmod0vcl | ⊢ ( 𝑊  ∈  LMod  →  ( 0g ‘ 𝑊 )  ∈  𝑉 ) | 
						
							| 24 | 1 2 5 13 | lmodvs1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 0g ‘ 𝑊 )  ∈  𝑉 )  →  ( ( 1r ‘ 𝑆 )  ·  ( 0g ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 25 | 11 23 24 | syl2anc2 | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑆 )  ·  ( 0g ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  =  ( 0g ‘ 𝑊 ) )  →  ( ( 1r ‘ 𝑆 )  ·  ( 0g ‘ 𝑊 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑌  =  ( 0g ‘ 𝑊 )  →  ( ( 1r ‘ 𝑆 )  ·  𝑌 )  =  ( ( 1r ‘ 𝑆 )  ·  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  =  ( 0g ‘ 𝑊 ) )  →  ( ( 1r ‘ 𝑆 )  ·  𝑌 )  =  ( ( 1r ‘ 𝑆 )  ·  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 29 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑊  ∈  LMod ) | 
						
							| 30 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 31 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 33 | 1 22 6 29 30 31 32 | lspsneq0b | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑋  =  ( 0g ‘ 𝑊 )  ↔  𝑌  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 34 | 33 | biimpar | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  =  ( 0g ‘ 𝑊 ) )  →  𝑋  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 35 | 26 28 34 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  =  ( 0g ‘ 𝑊 ) )  →  𝑋  =  ( ( 1r ‘ 𝑆 )  ·  𝑌 ) ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑗  =  ( 1r ‘ 𝑆 )  →  ( 𝑗  ·  𝑌 )  =  ( ( 1r ‘ 𝑆 )  ·  𝑌 ) ) | 
						
							| 37 | 36 | rspceeqv | ⊢ ( ( ( 1r ‘ 𝑆 )  ∈  ( 𝐾  ∖  {  0  } )  ∧  𝑋  =  ( ( 1r ‘ 𝑆 )  ·  𝑌 ) )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 38 | 21 35 37 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  =  ( 0g ‘ 𝑊 ) )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 39 |  | eqimss | ⊢ ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 41 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 42 | 1 41 6 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 43 | 11 9 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 45 | 1 41 6 29 44 30 | ellspsn5b | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 46 | 40 45 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 47 | 2 3 1 5 6 | ellspsn | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑗  ∈  𝐾 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 48 | 29 31 47 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑗  ∈  𝐾 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 49 | 46 48 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ∃ 𝑗  ∈  𝐾 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  →  ∃ 𝑗  ∈  𝐾 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 51 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑗  ∈  𝐾 ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) )  →  𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 54 | 33 | biimpd | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑋  =  ( 0g ‘ 𝑊 )  →  𝑌  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 55 | 54 | necon3d | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( 𝑌  ≠  ( 0g ‘ 𝑊 )  →  𝑋  ≠  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  →  𝑋  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑋  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 58 | 53 57 | eqnetrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  ( 𝑗  ·  𝑌 )  ≠  ( 0g ‘ 𝑊 ) ) | 
						
							| 59 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  𝑊  ∈  LVec ) | 
						
							| 60 | 59 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑊  ∈  LVec ) | 
						
							| 61 | 31 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 62 | 1 5 2 3 4 22 60 51 61 | lvecvsn0 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  ( ( 𝑗  ·  𝑌 )  ≠  ( 0g ‘ 𝑊 )  ↔  ( 𝑗  ≠   0   ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 63 | 58 62 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  ( 𝑗  ≠   0   ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 64 | 63 | simpld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑗  ≠   0  ) | 
						
							| 65 |  | eldifsn | ⊢ ( 𝑗  ∈  ( 𝐾  ∖  {  0  } )  ↔  ( 𝑗  ∈  𝐾  ∧  𝑗  ≠   0  ) ) | 
						
							| 66 | 51 64 65 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  ∧  ( 𝑗  ∈  𝐾  ∧  𝑋  =  ( 𝑗  ·  𝑌 ) ) )  →  𝑗  ∈  ( 𝐾  ∖  {  0  } ) ) | 
						
							| 67 | 50 66 53 | reximssdv | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  𝑌  ≠  ( 0g ‘ 𝑊 ) )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 68 | 38 67 | pm2.61dane | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 70 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐾  ∖  {  0  } ) )  →  𝑊  ∈  LVec ) | 
						
							| 71 |  | eldifi | ⊢ ( 𝑗  ∈  ( 𝐾  ∖  {  0  } )  →  𝑗  ∈  𝐾 ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐾  ∖  {  0  } ) )  →  𝑗  ∈  𝐾 ) | 
						
							| 73 |  | eldifsni | ⊢ ( 𝑗  ∈  ( 𝐾  ∖  {  0  } )  →  𝑗  ≠   0  ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐾  ∖  {  0  } ) )  →  𝑗  ≠   0  ) | 
						
							| 75 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐾  ∖  {  0  } ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 76 | 1 2 5 3 4 6 | lspsnvs | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( 𝑗  ∈  𝐾  ∧  𝑗  ≠   0  )  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { ( 𝑗  ·  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 77 | 70 72 74 75 76 | syl121anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐾  ∖  {  0  } ) )  →  ( 𝑁 ‘ { ( 𝑗  ·  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾  ∖  {  0  } )  →  ( 𝑁 ‘ { ( 𝑗  ·  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 79 |  | sneq | ⊢ ( 𝑋  =  ( 𝑗  ·  𝑌 )  →  { 𝑋 }  =  { ( 𝑗  ·  𝑌 ) } ) | 
						
							| 80 | 79 | fveqeq2d | ⊢ ( 𝑋  =  ( 𝑗  ·  𝑌 )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ( 𝑁 ‘ { ( 𝑗  ·  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 81 | 80 | biimprcd | ⊢ ( ( 𝑁 ‘ { ( 𝑗  ·  𝑌 ) } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑋  =  ( 𝑗  ·  𝑌 )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 82 | 78 81 | syl6 | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 𝐾  ∖  {  0  } )  →  ( 𝑋  =  ( 𝑗  ·  𝑌 )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 83 | 82 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 84 | 69 83 | impbid | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ·  𝑌 )  =  ( 𝑘  ·  𝑌 ) ) | 
						
							| 86 | 85 | eqeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ↔  𝑋  =  ( 𝑘  ·  𝑌 ) ) ) | 
						
							| 87 | 86 | cbvrexvw | ⊢ ( ∃ 𝑗  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑗  ·  𝑌 )  ↔  ∃ 𝑘  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑘  ·  𝑌 ) ) | 
						
							| 88 | 84 87 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑘  ∈  ( 𝐾  ∖  {  0  } ) 𝑋  =  ( 𝑘  ·  𝑌 ) ) ) |