Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspsneq.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
3 |
|
lspsneq.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
4 |
|
lspsneq.o |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
lspsneq.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lspsneq.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
7 |
|
lspsneq.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
lspsneq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
lspsneq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
12 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ Ring ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
14 |
3 13
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝐾 ) |
15 |
11 12 14
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝐾 ) |
16 |
2
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝑆 ∈ DivRing ) |
17 |
4 13
|
drngunz |
⊢ ( 𝑆 ∈ DivRing → ( 1r ‘ 𝑆 ) ≠ 0 ) |
18 |
7 16 17
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ≠ 0 ) |
19 |
|
eldifsn |
⊢ ( ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ↔ ( ( 1r ‘ 𝑆 ) ∈ 𝐾 ∧ ( 1r ‘ 𝑆 ) ≠ 0 ) ) |
20 |
15 18 19
|
sylanbrc |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
23 |
1 22
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
24 |
1 2 5 13
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
25 |
11 23 24
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
27 |
|
oveq2 |
⊢ ( 𝑌 = ( 0g ‘ 𝑊 ) → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) ) |
29 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LMod ) |
30 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
31 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
33 |
1 22 6 29 30 31 32
|
lspsneq0b |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 = ( 0g ‘ 𝑊 ) ↔ 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
34 |
33
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → 𝑋 = ( 0g ‘ 𝑊 ) ) |
35 |
26 28 34
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) |
36 |
|
oveq1 |
⊢ ( 𝑗 = ( 1r ‘ 𝑆 ) → ( 𝑗 · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) |
37 |
36
|
rspceeqv |
⊢ ( ( ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ∧ 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
38 |
21 35 37
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
39 |
|
eqimss |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
41 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
42 |
1 41 6
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
43 |
11 9 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
45 |
1 41 6 29 44 30
|
lspsnel5 |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
46 |
40 45
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
47 |
2 3 1 5 6
|
lspsnel |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
48 |
29 31 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
49 |
46 48
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) |
51 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑗 ∈ 𝐾 ) |
52 |
|
simpr |
⊢ ( ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) → 𝑋 = ( 𝑗 · 𝑌 ) ) |
53 |
52
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑋 = ( 𝑗 · 𝑌 ) ) |
54 |
33
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 = ( 0g ‘ 𝑊 ) → 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
55 |
54
|
necon3d |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑌 ≠ ( 0g ‘ 𝑊 ) → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
57 |
56
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
58 |
53 57
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → ( 𝑗 · 𝑌 ) ≠ ( 0g ‘ 𝑊 ) ) |
59 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑊 ∈ LVec ) |
61 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑌 ∈ 𝑉 ) |
62 |
1 5 2 3 4 22 60 51 61
|
lvecvsn0 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → ( ( 𝑗 · 𝑌 ) ≠ ( 0g ‘ 𝑊 ) ↔ ( 𝑗 ≠ 0 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ) ) |
63 |
58 62
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → ( 𝑗 ≠ 0 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ) |
64 |
63
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑗 ≠ 0 ) |
65 |
|
eldifsn |
⊢ ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 ) ) |
66 |
51 64 65
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) |
67 |
50 66 53
|
reximssdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
68 |
38 67
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
69 |
68
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
70 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑊 ∈ LVec ) |
71 |
|
eldifi |
⊢ ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → 𝑗 ∈ 𝐾 ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑗 ∈ 𝐾 ) |
73 |
|
eldifsni |
⊢ ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → 𝑗 ≠ 0 ) |
74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑗 ≠ 0 ) |
75 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑌 ∈ 𝑉 ) |
76 |
1 2 5 3 4 6
|
lspsnvs |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
77 |
70 72 74 75 76
|
syl121anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
78 |
77
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
79 |
|
sneq |
⊢ ( 𝑋 = ( 𝑗 · 𝑌 ) → { 𝑋 } = { ( 𝑗 · 𝑌 ) } ) |
80 |
79
|
fveqeq2d |
⊢ ( 𝑋 = ( 𝑗 · 𝑌 ) → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
81 |
80
|
biimprcd |
⊢ ( ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
82 |
78 81
|
syl6 |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → ( 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
83 |
82
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
84 |
69 83
|
impbid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
85 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝑌 ) = ( 𝑘 · 𝑌 ) ) |
86 |
85
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑋 = ( 𝑗 · 𝑌 ) ↔ 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
87 |
86
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ↔ ∃ 𝑘 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) |
88 |
84 87
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) ) |