| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneq0.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsneq0.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | lspsneq0.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 | 1 3 | lspsnid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 5 |  | eleq2 | ⊢ ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑋 } )  ↔  𝑋  ∈  {  0  } ) ) | 
						
							| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  →  𝑋  ∈  {  0  } ) ) | 
						
							| 7 |  | elsni | ⊢ ( 𝑋  ∈  {  0  }  →  𝑋  =   0  ) | 
						
							| 8 | 6 7 | syl6 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  →  𝑋  =   0  ) ) | 
						
							| 9 | 2 3 | lspsn0 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑁 ‘ {  0  } )  =  {  0  } ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ {  0  } )  =  {  0  } ) | 
						
							| 11 |  | sneq | ⊢ ( 𝑋  =   0   →  { 𝑋 }  =  {  0  } ) | 
						
							| 12 | 11 | fveqeq2d | ⊢ ( 𝑋  =   0   →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  ( 𝑁 ‘ {  0  } )  =  {  0  } ) ) | 
						
							| 13 | 10 12 | syl5ibrcom | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋  =   0   →  ( 𝑁 ‘ { 𝑋 } )  =  {  0  } ) ) | 
						
							| 14 | 8 13 | impbid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  𝑋  =   0  ) ) |