Step |
Hyp |
Ref |
Expression |
1 |
|
lspsneq0b.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspsneq0b.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lspsneq0b.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lspsneq0b.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
5 |
|
lspsneq0b.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
lspsneq0b.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
lspsneq0b.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
9 |
1 2 3
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
10 |
4 5 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
11 |
10
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
12 |
8 11
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) = { 0 } ) |
13 |
1 2 3
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
14 |
4 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
16 |
12 15
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 𝑌 = 0 ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
18 |
14
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) = { 0 } ) |
19 |
17 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
21 |
19 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑋 = 0 ) |
22 |
16 21
|
impbida |
⊢ ( 𝜑 → ( 𝑋 = 0 ↔ 𝑌 = 0 ) ) |