| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneq0b.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsneq0b.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 3 |  | lspsneq0b.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspsneq0b.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lspsneq0b.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | lspsneq0b.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | lspsneq0b.e | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 9 | 1 2 3 | lspsneq0 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  𝑋  =   0  ) ) | 
						
							| 10 | 4 5 9 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  𝑋  =   0  ) ) | 
						
							| 11 | 10 | biimpar | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝑋 } )  =  {  0  } ) | 
						
							| 12 | 8 11 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( 𝑁 ‘ { 𝑌 } )  =  {  0  } ) | 
						
							| 13 | 1 2 3 | lspsneq0 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝑁 ‘ { 𝑌 } )  =  {  0  }  ↔  𝑌  =   0  ) ) | 
						
							| 14 | 4 6 13 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑌 } )  =  {  0  }  ↔  𝑌  =   0  ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ( 𝑁 ‘ { 𝑌 } )  =  {  0  }  ↔  𝑌  =   0  ) ) | 
						
							| 16 | 12 15 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  𝑌  =   0  ) | 
						
							| 17 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 18 | 14 | biimpar | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( 𝑁 ‘ { 𝑌 } )  =  {  0  } ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( 𝑁 ‘ { 𝑋 } )  =  {  0  } ) | 
						
							| 20 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  ( ( 𝑁 ‘ { 𝑋 } )  =  {  0  }  ↔  𝑋  =   0  ) ) | 
						
							| 21 | 19 20 | mpbid | ⊢ ( ( 𝜑  ∧  𝑌  =   0  )  →  𝑋  =   0  ) | 
						
							| 22 | 16 21 | impbida | ⊢ ( 𝜑  →  ( 𝑋  =   0   ↔  𝑌  =   0  ) ) |