| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsneq0b.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsneq0b.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspsneq0b.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspsneq0b.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lspsneq0b.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lspsneq0b.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
lspsneq0b.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 9 |
1 2 3
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 10 |
4 5 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 11 |
10
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
| 12 |
8 11
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) = { 0 } ) |
| 13 |
1 2 3
|
lspsneq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
| 14 |
4 6 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
| 16 |
12 15
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 𝑌 = 0 ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 18 |
14
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) = { 0 } ) |
| 19 |
17 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
| 20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 21 |
19 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑋 = 0 ) |
| 22 |
16 21
|
impbida |
⊢ ( 𝜑 → ( 𝑋 = 0 ↔ 𝑌 = 0 ) ) |