| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsneu.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsneu.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | lspsneu.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | lspsneu.o | ⊢ 𝑂  =  ( 0g ‘ 𝑆 ) | 
						
							| 5 |  | lspsneu.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | lspsneu.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 7 |  | lspsneu.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 8 |  | lspsneu.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 9 |  | lspsneu.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | lspsneu.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 11 | 10 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 12 | 1 2 3 4 5 7 8 9 11 | lspsneq | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 14 |  | eqtr2 | ⊢ ( ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) )  →  ( 𝑗  ·  𝑌 )  =  ( 𝑖  ·  𝑌 ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  ( 𝑗  ·  𝑌 )  =  ( 𝑖  ·  𝑌 ) ) | 
						
							| 16 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝜑 ) | 
						
							| 17 | 16 8 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑊  ∈  LVec ) | 
						
							| 18 |  | simp2l | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) ) | 
						
							| 19 | 18 | eldifad | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑗  ∈  𝐾 ) | 
						
							| 20 |  | simp2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) ) | 
						
							| 21 | 20 | eldifad | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑖  ∈  𝐾 ) | 
						
							| 22 | 16 11 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 23 |  | eldifsni | ⊢ ( 𝑌  ∈  ( 𝑉  ∖  {  0  } )  →  𝑌  ≠   0  ) | 
						
							| 24 | 16 10 23 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑌  ≠   0  ) | 
						
							| 25 | 1 5 2 3 6 17 19 21 22 24 | lvecvscan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  ( ( 𝑗  ·  𝑌 )  =  ( 𝑖  ·  𝑌 )  ↔  𝑗  =  𝑖 ) ) | 
						
							| 26 | 15 25 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  ∧  ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  ∧  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) ) )  →  𝑗  =  𝑖 ) | 
						
							| 27 | 26 | 3exp | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) )  →  ( ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  →  ( ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) )  →  𝑗  =  𝑖 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ( ( 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } )  ∧  𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) )  →  ( ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) )  →  𝑗  =  𝑖 ) ) ) ) | 
						
							| 29 | 28 | ralrimdvv | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ∀ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) ∀ 𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) ( ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) )  →  𝑗  =  𝑖 ) ) ) | 
						
							| 30 | 13 29 | jcad | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ( ∃ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  ∀ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) ∀ 𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) ( ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) )  →  𝑗  =  𝑖 ) ) ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ·  𝑌 )  =  ( 𝑖  ·  𝑌 ) ) | 
						
							| 32 | 31 | eqeq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ↔  𝑋  =  ( 𝑖  ·  𝑌 ) ) ) | 
						
							| 33 | 32 | reu4 | ⊢ ( ∃! 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 )  ↔  ( ∃ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  ∀ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) ∀ 𝑖  ∈  ( 𝐾  ∖  { 𝑂 } ) ( ( 𝑋  =  ( 𝑗  ·  𝑌 )  ∧  𝑋  =  ( 𝑖  ·  𝑌 ) )  →  𝑗  =  𝑖 ) ) ) | 
						
							| 34 | 30 33 | imbitrrdi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ∃! 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 35 |  | reurex | ⊢ ( ∃! 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 )  →  ∃ 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) | 
						
							| 36 | 35 12 | imbitrrid | ⊢ ( 𝜑  →  ( ∃! 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 )  →  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 37 | 34 36 | impbid | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃! 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 ) ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ·  𝑌 )  =  ( 𝑘  ·  𝑌 ) ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( 𝑗  =  𝑘  →  ( 𝑋  =  ( 𝑗  ·  𝑌 )  ↔  𝑋  =  ( 𝑘  ·  𝑌 ) ) ) | 
						
							| 40 | 39 | cbvreuvw | ⊢ ( ∃! 𝑗  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑗  ·  𝑌 )  ↔  ∃! 𝑘  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑘  ·  𝑌 ) ) | 
						
							| 41 | 37 40 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃! 𝑘  ∈  ( 𝐾  ∖  { 𝑂 } ) 𝑋  =  ( 𝑘  ·  𝑌 ) ) ) |