| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnne2.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsnne2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lspsnne2.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 4 |  | lspsnne2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 |  | lspsnne2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 6 |  | lspsnne2.e | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 7 |  | eqimss | ⊢ ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 8 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 9 | 1 8 2 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 10 | 3 5 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 11 | 1 8 2 3 10 4 | ellspsn5b | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 12 | 7 11 | imbitrrid | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 13 | 12 | necon3bd | ⊢ ( 𝜑  →  ( ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 14 | 6 13 | mpd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) |