| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnnecom.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnnecom.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspsnnecom.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspsnnecom.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspsnnecom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lspsnnecom.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 7 |
|
lspsnnecom.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 10 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 11 |
1 3 9 5 10 7
|
lspsnne2 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 |
11
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 13 |
1 2 3 4 6 5 12
|
lspsnne1 |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |