| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnneg.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsnneg.m | ⊢ 𝑀  =  ( invg ‘ 𝑊 ) | 
						
							| 3 |  | lspsnneg.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) )  =  ( invg ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 8 | 1 2 4 5 6 7 | lmodvneg1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) 𝑋 )  =  ( 𝑀 ‘ 𝑋 ) ) | 
						
							| 9 | 8 | sneqd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) 𝑋 ) }  =  { ( 𝑀 ‘ 𝑋 ) } ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  =  ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 12 | 4 | lmodfgrp | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Grp ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 14 | 4 13 6 | lmod1cl | ⊢ ( 𝑊  ∈  LMod  →  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 15 | 13 7 | grpinvcl | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  Grp  ∧  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( 𝑊  ∈  LMod  →  ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 19 | 4 13 1 5 3 | lspsnvsi | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  ⊆  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 20 | 11 17 18 19 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  ⊆  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 21 | 10 20 | eqsstrrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } )  ⊆  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 22 | 1 2 | lmodvnegcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑀 ‘ 𝑋 )  ∈  𝑉 ) | 
						
							| 23 | 1 2 4 5 6 7 | lmodvneg1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑀 ‘ 𝑋 )  ∈  𝑉 )  →  ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) )  =  ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) ) | 
						
							| 24 | 22 23 | syldan | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) )  =  ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) ) ) | 
						
							| 25 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 26 | 1 2 | grpinvinv | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑋  ∈  𝑉 )  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 27 | 25 26 | sylan | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 28 | 24 27 | eqtrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 29 | 28 | sneqd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) }  =  { 𝑋 } ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } )  =  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 31 | 4 13 1 5 3 | lspsnvsi | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( 𝑀 ‘ 𝑋 )  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } )  ⊆  ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) | 
						
							| 32 | 11 17 22 31 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) (  ·𝑠  ‘ 𝑊 ) ( 𝑀 ‘ 𝑋 ) ) } )  ⊆  ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) | 
						
							| 33 | 30 32 | eqsstrrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } ) ) | 
						
							| 34 | 21 33 | eqssd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { ( 𝑀 ‘ 𝑋 ) } )  =  ( 𝑁 ‘ { 𝑋 } ) ) |