| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnss2.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsnss2.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | lspsnss2.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | lspsnss2.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | lspsnss2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 6 |  | lspsnss2.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | lspsnss2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 8 |  | lspsnss2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 10 | 1 9 5 | lspsncl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 11 | 6 8 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 12 | 1 9 5 6 11 7 | ellspsn5b | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 13 | 2 3 1 4 5 | ellspsn | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑘  ∈  𝐾 𝑋  =  ( 𝑘  ·  𝑌 ) ) ) | 
						
							| 14 | 6 8 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑘  ∈  𝐾 𝑋  =  ( 𝑘  ·  𝑌 ) ) ) | 
						
							| 15 | 12 14 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ⊆  ( 𝑁 ‘ { 𝑌 } )  ↔  ∃ 𝑘  ∈  𝐾 𝑋  =  ( 𝑘  ·  𝑌 ) ) ) |