| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnsub.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspsnsub.s | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 3 |  | lspsnsub.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lspsnsub.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 5 |  | lspsnsub.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | lspsnsub.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 | 1 2 | lmodvsubcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  −  𝑌 )  ∈  𝑉 ) | 
						
							| 8 | 4 5 6 7 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  ∈  𝑉 ) | 
						
							| 9 |  | eqid | ⊢ ( invg ‘ 𝑊 )  =  ( invg ‘ 𝑊 ) | 
						
							| 10 | 1 9 3 | lspsnneg | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑋  −  𝑌 )  ∈  𝑉 )  →  ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  −  𝑌 ) ) } )  =  ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) ) | 
						
							| 11 | 4 8 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  −  𝑌 ) ) } )  =  ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) ) | 
						
							| 12 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Grp ) | 
						
							| 14 | 1 2 9 | grpinvsub | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  −  𝑌 ) )  =  ( 𝑌  −  𝑋 ) ) | 
						
							| 15 | 13 5 6 14 | syl3anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  −  𝑌 ) )  =  ( 𝑌  −  𝑋 ) ) | 
						
							| 16 | 15 | sneqd | ⊢ ( 𝜑  →  { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  −  𝑌 ) ) }  =  { ( 𝑌  −  𝑋 ) } ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋  −  𝑌 ) ) } )  =  ( 𝑁 ‘ { ( 𝑌  −  𝑋 ) } ) ) | 
						
							| 18 | 11 17 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } )  =  ( 𝑁 ‘ { ( 𝑌  −  𝑋 ) } ) ) |