Description: The span of a singleton is an additive subgroup (frequently used special case of lspcl ). (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnsubg.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnsubg.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lspsnsubg.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnsubg.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 4 | 1 3 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) | 
| 5 | 3 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) | 
| 6 | 4 5 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |