| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnsubn0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnsubn0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspsnsubn0.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
lspsnsubn0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lspsnsubn0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lspsnsubn0.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
lspsnsubn0.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 8 |
1 2 3
|
lmodsubeq0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 − 𝑌 ) = 0 ↔ 𝑋 = 𝑌 ) ) |
| 9 |
4 5 6 8
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) = 0 ↔ 𝑋 = 𝑌 ) ) |
| 10 |
|
sneq |
⊢ ( 𝑋 = 𝑌 → { 𝑋 } = { 𝑌 } ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑋 = 𝑌 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 |
9 11
|
biimtrdi |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 13 |
12
|
necon3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 − 𝑌 ) ≠ 0 ) ) |
| 14 |
7 13
|
mpd |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ≠ 0 ) |