Metamath Proof Explorer


Theorem lspsntrim

Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lspsntrim.v 𝑉 = ( Base ‘ 𝑊 )
lspsntrim.s = ( -g𝑊 )
lspsntrim.p = ( LSSum ‘ 𝑊 )
lspsntrim.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lspsntrim ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) )

Proof

Step Hyp Ref Expression
1 lspsntrim.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsntrim.s = ( -g𝑊 )
3 lspsntrim.p = ( LSSum ‘ 𝑊 )
4 lspsntrim.n 𝑁 = ( LSpan ‘ 𝑊 )
5 eqid ( invg𝑊 ) = ( invg𝑊 )
6 1 5 lmodvnegcl ( ( 𝑊 ∈ LMod ∧ 𝑌𝑉 ) → ( ( invg𝑊 ) ‘ 𝑌 ) ∈ 𝑉 )
7 6 3adant2 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( ( invg𝑊 ) ‘ 𝑌 ) ∈ 𝑉 )
8 eqid ( +g𝑊 ) = ( +g𝑊 )
9 1 8 4 3 lspsntri ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ( ( invg𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 ( +g𝑊 ) ( ( invg𝑊 ) ‘ 𝑌 ) ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ 𝑌 ) } ) ) )
10 7 9 syld3an3 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { ( 𝑋 ( +g𝑊 ) ( ( invg𝑊 ) ‘ 𝑌 ) ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ 𝑌 ) } ) ) )
11 1 8 5 2 grpsubval ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝑊 ) ( ( invg𝑊 ) ‘ 𝑌 ) ) )
12 11 sneqd ( ( 𝑋𝑉𝑌𝑉 ) → { ( 𝑋 𝑌 ) } = { ( 𝑋 ( +g𝑊 ) ( ( invg𝑊 ) ‘ 𝑌 ) ) } )
13 12 fveq2d ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑋 ( +g𝑊 ) ( ( invg𝑊 ) ‘ 𝑌 ) ) } ) )
14 13 3adant1 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑋 ( +g𝑊 ) ( ( invg𝑊 ) ‘ 𝑌 ) ) } ) )
15 1 5 4 lspsnneg ( ( 𝑊 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) )
16 15 3adant2 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) )
17 16 eqcomd ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ 𝑌 ) } ) )
18 17 oveq2d ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ 𝑌 ) } ) ) )
19 10 14 18 3sstr4d ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑌 } ) ) )