| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsntrim.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsntrim.s |
⊢ − = ( -g ‘ 𝑊 ) |
| 3 |
|
lspsntrim.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
lspsntrim.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 6 |
1 5
|
lmodvnegcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 7 |
6
|
3adant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 9 |
1 8 4 3
|
lspsntri |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) ) |
| 10 |
7 9
|
syld3an3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) ) |
| 11 |
1 8 5 2
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ) |
| 12 |
11
|
sneqd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { ( 𝑋 − 𝑌 ) } = { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑋 ( +g ‘ 𝑊 ) ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) } ) ) |
| 15 |
1 5 4
|
lspsnneg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) |
| 18 |
17
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) } ) ) ) |
| 19 |
10 14 18
|
3sstr4d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |