| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspssp.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 2 |  | lspssp.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 | 3 1 | lssss | ⊢ ( 𝑈  ∈  𝑆  →  𝑈  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 5 | 3 2 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ⊆  ( Base ‘ 𝑊 )  ∧  𝑇  ⊆  𝑈 )  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ 𝑈 ) ) | 
						
							| 6 | 4 5 | syl3an2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑇  ⊆  𝑈 )  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ 𝑈 ) ) | 
						
							| 7 | 1 2 | lspid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆 )  →  ( 𝑁 ‘ 𝑈 )  =  𝑈 ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑇  ⊆  𝑈 )  →  ( 𝑁 ‘ 𝑈 )  =  𝑈 ) | 
						
							| 9 | 6 8 | sseqtrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ∈  𝑆  ∧  𝑇  ⊆  𝑈 )  →  ( 𝑁 ‘ 𝑇 )  ⊆  𝑈 ) |