Metamath Proof Explorer


Theorem lspssp

Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspssp.s 𝑆 = ( LSubSp ‘ 𝑊 )
lspssp.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lspssp ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈 ) → ( 𝑁𝑇 ) ⊆ 𝑈 )

Proof

Step Hyp Ref Expression
1 lspssp.s 𝑆 = ( LSubSp ‘ 𝑊 )
2 lspssp.n 𝑁 = ( LSpan ‘ 𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 3 1 lssss ( 𝑈𝑆𝑈 ⊆ ( Base ‘ 𝑊 ) )
5 3 2 lspss ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑇𝑈 ) → ( 𝑁𝑇 ) ⊆ ( 𝑁𝑈 ) )
6 4 5 syl3an2 ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈 ) → ( 𝑁𝑇 ) ⊆ ( 𝑁𝑈 ) )
7 1 2 lspid ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → ( 𝑁𝑈 ) = 𝑈 )
8 7 3adant3 ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈 ) → ( 𝑁𝑈 ) = 𝑈 )
9 6 8 sseqtrd ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈 ) → ( 𝑁𝑇 ) ⊆ 𝑈 )