| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lspss.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  𝑇  ⊆  𝑉 ) | 
						
							| 5 |  | simp3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  𝑈  ⊆  𝑉 ) | 
						
							| 6 | 4 5 | unssd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑇  ∪  𝑈 )  ⊆  𝑉 ) | 
						
							| 7 |  | ssun1 | ⊢ 𝑇  ⊆  ( 𝑇  ∪  𝑈 ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  𝑇  ⊆  ( 𝑇  ∪  𝑈 ) ) | 
						
							| 9 | 1 2 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑇  ∪  𝑈 )  ⊆  𝑉  ∧  𝑇  ⊆  ( 𝑇  ∪  𝑈 ) )  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 10 | 3 6 8 9 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 11 |  | ssun2 | ⊢ 𝑈  ⊆  ( 𝑇  ∪  𝑈 ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  𝑈  ⊆  ( 𝑇  ∪  𝑈 ) ) | 
						
							| 13 | 1 2 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑇  ∪  𝑈 )  ⊆  𝑉  ∧  𝑈  ⊆  ( 𝑇  ∪  𝑈 ) )  →  ( 𝑁 ‘ 𝑈 )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 14 | 3 6 12 13 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ 𝑈 )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 15 | 10 14 | unssd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 16 | 1 2 | lspssv | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑇  ∪  𝑈 )  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) )  ⊆  𝑉 ) | 
						
							| 17 | 3 6 16 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) )  ⊆  𝑉 ) | 
						
							| 18 | 15 17 | sstrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) )  ⊆  𝑉 ) | 
						
							| 19 | 1 2 | lspssid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉 )  →  𝑇  ⊆  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 20 | 3 4 19 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  𝑇  ⊆  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 21 | 1 2 | lspssid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑈  ⊆  𝑉 )  →  𝑈  ⊆  ( 𝑁 ‘ 𝑈 ) ) | 
						
							| 22 |  | unss12 | ⊢ ( ( 𝑇  ⊆  ( 𝑁 ‘ 𝑇 )  ∧  𝑈  ⊆  ( 𝑁 ‘ 𝑈 ) )  →  ( 𝑇  ∪  𝑈 )  ⊆  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) ) | 
						
							| 23 | 20 21 22 | 3imp3i2an | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑇  ∪  𝑈 )  ⊆  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) ) | 
						
							| 24 | 1 2 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) )  ⊆  𝑉  ∧  ( 𝑇  ∪  𝑈 )  ⊆  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) )  →  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) )  ⊆  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) ) ) | 
						
							| 25 | 3 18 23 24 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) )  ⊆  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) ) ) | 
						
							| 26 | 1 2 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) )  ⊆  𝑉  ∧  ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) )  →  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) )  ⊆  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) ) | 
						
							| 27 | 3 17 15 26 | syl3anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) )  ⊆  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) ) | 
						
							| 28 | 1 2 | lspidm | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑇  ∪  𝑈 )  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) )  =  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 29 | 3 6 28 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) )  =  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 30 | 27 29 | sseqtrd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) )  ⊆  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) ) ) | 
						
							| 31 | 25 30 | eqssd | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑇  ⊆  𝑉  ∧  𝑈  ⊆  𝑉 )  →  ( 𝑁 ‘ ( 𝑇  ∪  𝑈 ) )  =  ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 )  ∪  ( 𝑁 ‘ 𝑈 ) ) ) ) |